This paper investigates the stability of bifurcating solutions for a prey-predator model with population flux by attractive transition. Applying spectral analysis and the principle of exchange of stability, we obtain that the bifurcating solutions are stable/unstable under some certain conditions.
Citation: Qian Xu, Chunfeng Xing. The stability of bifurcating solutions for a prey-predator model with population flux by attractive transition[J]. AIMS Mathematics, 2021, 6(7): 6948-6960. doi: 10.3934/math.2021407
This paper investigates the stability of bifurcating solutions for a prey-predator model with population flux by attractive transition. Applying spectral analysis and the principle of exchange of stability, we obtain that the bifurcating solutions are stable/unstable under some certain conditions.
[1] | K. Oeda, K. Kuto, Positive steady states for a prey-predator model with population flux by attractive transition, Nonlinear Anal.: Real World Appl., 44 (2018), 589–615. doi: 10.1016/j.nonrwa.2018.06.006 |
[2] | A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, New York: Springer-Verlag, 2001. |
[3] | L. Li, Coexistence theorems of steady states for predator-prey interacting system, Trans. Am. Math. Soc., 305 (1988), 143–166. doi: 10.1090/S0002-9947-1988-0920151-1 |
[4] | L. Li, On positive solutions of a nonlinear equilibrium boundary value problem, J. Math. Anal. Appl., 138 (1989), 537–549. doi: 10.1016/0022-247X(89)90308-9 |
[5] | J. López-Gómez, Nonlinear eigenvalues and global bifurcation to the search of positive solutions for general Lotka-Volterra reaction diffusion systems with two species, Differ. Integr. Equations, 7 (1994), 1427–1452. |
[6] | J. López-Gómez, R. Pardo, Coexistence regions in Lotka-Volterra models with diffusion, Nonlinear Anal., 19 (1992), 11–28. doi: 10.1016/0362-546X(92)90027-C |
[7] | Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21 (1990), 327–345. doi: 10.1137/0521018 |
[8] | T. Kadota, K. Kuto, Positive steady-states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387–1401. doi: 10.1016/j.jmaa.2005.11.065 |
[9] | K. Oeda, K. Kuto, Characterization of coexistence states for a prey-predator model with large population flux by attractive transition, preprint. |
[10] | Q. Xu, Y. Guo, The existence and stability of steady states for a prey-predator system with cross diffusion of quasilinear fractional type, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 257–270. doi: 10.1007/s10255-014-0281-3 |
[11] | K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal.: Real World Appl., 10 (2009), 943–965. doi: 10.1016/j.nonrwa.2007.11.015 |
[12] | S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. doi: 10.1002/mma.6036 |
[13] | S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: Bifurcation analysis and Turing instability, J. Appl. Math. Comput., 58 (2018), 125–149. doi: 10.1007/s12190-017-1137-9 |
[14] | S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior, Acta Appl. Math., 169 (2020), 125–143. doi: 10.1007/s10440-019-00291-z |
[15] | H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer, 2004. |
[16] | J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494–531. doi: 10.1006/jfan.1999.3483 |
[17] | J. Blat, K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339–1353. doi: 10.1137/0517094 |