Research article

The stability of bifurcating solutions for a prey-predator model with population flux by attractive transition

  • Received: 14 February 2021 Accepted: 13 April 2021 Published: 25 April 2021
  • MSC : 35B32, 35B35

  • This paper investigates the stability of bifurcating solutions for a prey-predator model with population flux by attractive transition. Applying spectral analysis and the principle of exchange of stability, we obtain that the bifurcating solutions are stable/unstable under some certain conditions.

    Citation: Qian Xu, Chunfeng Xing. The stability of bifurcating solutions for a prey-predator model with population flux by attractive transition[J]. AIMS Mathematics, 2021, 6(7): 6948-6960. doi: 10.3934/math.2021407

    Related Papers:

  • This paper investigates the stability of bifurcating solutions for a prey-predator model with population flux by attractive transition. Applying spectral analysis and the principle of exchange of stability, we obtain that the bifurcating solutions are stable/unstable under some certain conditions.



    加载中


    [1] K. Oeda, K. Kuto, Positive steady states for a prey-predator model with population flux by attractive transition, Nonlinear Anal.: Real World Appl., 44 (2018), 589–615. doi: 10.1016/j.nonrwa.2018.06.006
    [2] A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, New York: Springer-Verlag, 2001.
    [3] L. Li, Coexistence theorems of steady states for predator-prey interacting system, Trans. Am. Math. Soc., 305 (1988), 143–166. doi: 10.1090/S0002-9947-1988-0920151-1
    [4] L. Li, On positive solutions of a nonlinear equilibrium boundary value problem, J. Math. Anal. Appl., 138 (1989), 537–549. doi: 10.1016/0022-247X(89)90308-9
    [5] J. López-Gómez, Nonlinear eigenvalues and global bifurcation to the search of positive solutions for general Lotka-Volterra reaction diffusion systems with two species, Differ. Integr. Equations, 7 (1994), 1427–1452.
    [6] J. López-Gómez, R. Pardo, Coexistence regions in Lotka-Volterra models with diffusion, Nonlinear Anal., 19 (1992), 11–28. doi: 10.1016/0362-546X(92)90027-C
    [7] Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21 (1990), 327–345. doi: 10.1137/0521018
    [8] T. Kadota, K. Kuto, Positive steady-states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387–1401. doi: 10.1016/j.jmaa.2005.11.065
    [9] K. Oeda, K. Kuto, Characterization of coexistence states for a prey-predator model with large population flux by attractive transition, preprint.
    [10] Q. Xu, Y. Guo, The existence and stability of steady states for a prey-predator system with cross diffusion of quasilinear fractional type, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 257–270. doi: 10.1007/s10255-014-0281-3
    [11] K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal.: Real World Appl., 10 (2009), 943–965. doi: 10.1016/j.nonrwa.2007.11.015
    [12] S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. doi: 10.1002/mma.6036
    [13] S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: Bifurcation analysis and Turing instability, J. Appl. Math. Comput., 58 (2018), 125–149. doi: 10.1007/s12190-017-1137-9
    [14] S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior, Acta Appl. Math., 169 (2020), 125–143. doi: 10.1007/s10440-019-00291-z
    [15] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer, 2004.
    [16] J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494–531. doi: 10.1006/jfan.1999.3483
    [17] J. Blat, K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339–1353. doi: 10.1137/0517094
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2030) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog