Research article Special Issues

On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $

  • Received: 03 February 2021 Accepted: 19 April 2021 Published: 25 April 2021
  • MSC : 11L03, 11L05

  • The main purpose of this article is using the elementary methods and the properties of the character sums of the polynomials to study the calculating problem of one kind sixth power mean of the two-term exponential sums weighted by Legendre's symbol modulo $ p $, an odd prime, and give an interesting calculating formula for it.

    Citation: Wenpeng Zhang, Yuanyuan Meng. On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $[J]. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408

    Related Papers:

  • The main purpose of this article is using the elementary methods and the properties of the character sums of the polynomials to study the calculating problem of one kind sixth power mean of the two-term exponential sums weighted by Legendre's symbol modulo $ p $, an odd prime, and give an interesting calculating formula for it.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [2] L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss Sums and Kloosterman Sums, Acta Math. Sin (Chinese Series), 61 (2018), 67–72.
    [3] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. doi: 10.1515/math-2019-0034
    [4] L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equ., 2020 (2020), 220–228. doi: 10.1186/s13662-020-02660-7
    [5] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5
    [6] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. doi: 10.1515/math-2017-0104
    [7] D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. doi: 10.1007/s10587-014-0082-0
    [8] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1982.
    [9] X. X. Li, J. Y. Hu, The hybrid power mean quartic Gauss sums and Kloosterman sums, Open Math., 15 (2017), 151–156. doi: 10.1515/math-2017-0014
    [10] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907–915. doi: 10.3390/math7100907
    [11] J. Z. Wang, Y. K. Ma, The hybrid power mean of the $k$-th Gauss sums and Kloosterman sums, Journal of Shaanxi Normal University (Natural Science Edition), 45 (2017), 5–7.
    [12] A. Weil, Basic number theory, New York: Springer-Verlag, 1974.
    [13] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [14] J. Zhang, W. P. Zhang, A certain two-term exponential sum and its fourth power means, AIMS Mathematics, 5 (2020), 7500–7509. doi: 10.3934/math.2020480
    [15] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. doi: 10.1016/j.jnt.2013.10.022
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2421) PDF downloads(202) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog