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1. Introduction

Let q ≥ 3 be a fixed integer. For any integer k ≥ 2 and m with (m, q) = 1, we define the two-term
exponential sums C(m, k; q) as follows:

C(m, k; q) =

q−1∑
a=0

e
(
mak + a

q

)
,

where as usual, e(y) = e2πiy and i2 = −1.
Since this kind sums play an very important role in the study of analytic number theory, so many

number theorists and scholars had studied the various properties of C(m, k; q), and obtained a series
of meaningful research results, we do not want to enumerate here, interested readers can refer to
references [2–7,9–11,13–15]. Note that |C(m, k; q)| is a multiplicative function of q, so people often
only consider case that q = p or pr, where p is an odd prime, and r ≥ 2 is a positive integer.

For example, H. Zhang and W. P. Zhang [13] proved that for any odd prime p, one has

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣∣∣
4

=

{
2p3 − p2 if 3 - p − 1,
2p3 − 7p2 if 3|p − 1,
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where n represents any integer with (n, p) = 1.
L. Chen and X. Wang [3] studied the calculating problem of the fourth power mean of G(m, 4; p),

and proved the following conclusion:

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣∣∣
4

=



2p3 if p = 12k + 11;
2p2 (p − 2) if p = 12k + 7;
2p

(
p2 − 4p − 2α2

)
if p = 24k + 5;

2p
(
p2 − 6p − 2α2

)
if p = 24k + 13;

2p
(
p2 − 10p − 2α2

)
if p = 24k + 1;

2p
(
p2 − 8p − 2α2

)
if p = 24k + 17,

where α =

p−1
2∑

a=1

(
a + a

p

)
, and

(
∗

p

)
denotes the Legendre’s symbol modulo p, and a · a ≡ 1 mod p.

Z. Y. Chen and W. P. Zhang [6] proved that for any prime p with p ≡ 5 mod 8, one has the identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4

p

)∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma + a

p

)∣∣∣∣∣∣∣
2

= 3p3 − 3p2 + 2p
3
2α − 3p,

where α = α(p) is the same as defined in the above.
Very recently, J. Zhang and W. P. Zhang [14] studied the fourth power mean of the two-term

exponential sums weighted by Legendre’s symbol modulo an odd prime p, and proved that for any
odd prime p, one has the identity

p−1∑
m=1

χ2(m)

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

=

{
p2 (δ − 3) if p ≡ 1 mod 6;
p2 (δ + 3) if p ≡ −1 mod 6,

(1.1)

where δ =

p−1∑
d=1

d − 1 + d
p

 is an integer which satisfies the estimate |δ| ≤ 2
√

p.

The main purpose of this paper as a generalization of (3.1), and study the calculating problem of
the 2h-th power mean of the two-term exponential sums

G(h, p) =

p−1∑
m=1

(
m
p

)
·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2h

, (1.2)

where p is an odd prime, and h ≥ 3 is an integer.
It is clear that J. Zhang and W. P. Zhang [14] proved an identity for G(2, p). But for h ≥ 3, it seems

that none had studied it before, at least we have not seen such a result at present. We think this content
is meaningful for further research. Because it can solve the problem of calculating the 2h-th power
mean

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
m2a3 + a

p

)∣∣∣∣∣∣∣
2h

=

p−1∑
m=1

[
1 +

(
m
p

)]
·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2h

.
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In other words, we shall deal with the 2h-th power mean problem involving the sums of quadratic
residues modulo p. This will provide some new ideas and methods for us to study the power mean
problem on special sets. Of course, the problem we are studying in here is much more difficult than
that in [14], because we are going to do the sixth power mean, some congruence equations involved
more variables, this can lead to the computational difficulties.

2. Several lemmas

In this section, we will give several necessary lemmas. Of course, the proofs of some lemmas need
the knowledge of elementary and analytic number theory. In particular, the properties of the quadratic
residues and the Legendre’s symbol modulo p. All these can be found in references [1,8,12], and we
do not repeat them. First we have
Lemma 1. Let p > 3 be an odd prime. Then we have the identity

p−1∑
a=1

p−1∑
b=1

a3+b3+1≡0 mod p

χ2(ab)χ2 (a + b + 1)

= χ2(3) · δ(p) − χ2(−1) + χ2(−1)
p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
,

where χ2 =
(
∗

p

)
denotes the Legendre’s symbol modulo p.

Proof. Note that χ2(b) = χ2

(
b
)

and χ2(b − 1) = χ2

(
b(1 − b)

)
, from the properties of the complete

residue system modulo p we have
p−1∑
a=1

p−1∑
b=1

a3+b3+1≡0 mod p

χ2(ab)χ2 (a + b + 1) =

p−1∑
a=1

p−1∑
b=0

a3+(b−1)3+1≡0 mod p

χ2(a(b − 1))χ2 (a + b)

=

p−1∑
a=1

p−1∑
b=1

a3b3+b3−3b2+3b≡0 mod p

χ2(ab(b − 1))χ2 (ab + b)

=

p−1∑
a=1

p−1∑
b=1

a3+1−3b+3b
2
≡0 mod p

χ2(a)χ2(a + 1)χ2 (b − 1)

=

p−1∑
a=1

p−1∑
b=1

3(a3+1)≡b(1−b) mod p

χ2(a)χ2(a + 1)χ2

(
b(1 − b)

)

=

p−1∑
a=1

p−1∑
b=1

4·3(a3+1)≡1−(1−2b)2 mod p

χ2(a)χ2(a + 1)χ2

(
1 − (1 − 2b)2

)

=

p−1∑
a=1

χ2(3)χ2(a)χ2(a + 1)χ2

(
a3 + 1

) [
1 + χ2

(
1 − 4 · 3

(
a3 + 1

))]
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= χ2(3)
p−2∑
a=1

χ2(a)χ2

(
a2 − a + 1

)
+

p−1∑
a=1

χ2(a)χ2(a + 1)χ2(a3 + 1)χ2

(
−1 − 4a3

)
= χ2(3)

p−2∑
a=1

χ2(a)χ2

(
a2 − a + 1

)
+

p−1∑
a=1

χ8
2(a)χ2(a + 1)χ2(a3

+ 1)χ2

(
−4 − a3

)
= χ2(3)

p−2∑
a=1

χ2(a)χ2

(
a2 − a + 1

)
+

p−1∑
a=1

χ2(a + 1)χ2(a3 + 1)χ2

(
−a3 − 4

)
= χ2(3)

p−2∑
a=1

χ2 (a − 1 + a) + χ2(−1)
p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
= χ2(3) · δ(p) − χ2(−1) + χ2(−1)

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
.

This proves Lemma 1.
Lemma 2. Let p be an odd prime, then we have the identity

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
1 + b3 + c3 − d3 − e3

)
χ2 (1 + b + c − d − e)

= χ2(3) · 2 · p2 ·

p−1∑
b=1

4+b3≡0 mod p

χ2(b)χ2 (b + 1) + p2 + χ2(3) · 2 · p

+χ2(−1) · p ·
p−1∑
b=1

p−1∑
c=1

χ2(bc)χ2

(
b3 + c3 + 4

)
χ2(b + c + 1).

Proof. From the properties of the complete residue system and quadratic residue modulo p we have

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
1 + b3 + c3 − d3 − e3

)
χ2 (1 + b + c − d − e)

=

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
1 + (b + d)3 + (c + e)3 − d3 − e3

)
χ2 (1 + b + c)

=

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
4 + b3 + 3b(2d + b)2 + c3 + 3c(2e + c)2

)
χ2 (1 + b + c)

=

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
4 + b3 + 3bd2 + c3 + 3ce2

)
χ2 (b + c + 1) . (2.1)

For any integer n, note that the identity

p−1∑
a=0

(
a2 + n

p

)
=

{
p − 1 if p | n,
−1 if (p, n) = 1.

(2.2)
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Combining (2.1), (2.2) and the properties of the quadratic residue modulo p we have

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
1 + b3 + c3 − d3 − e3

)
χ2 (1 + b + c − d − e)

=

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
4 + b3 + 3bd2 + c3 + 3ce2

)
χ2 (b + c + 1)

=

p−1∑
b=1

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
4 + b3 + 3bd2 + c3 + 3ce2

)
χ2 (b + c + 1)

+

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
4 + c3 + 3ce2

)
χ2 (c + 1)

= p
p−1∑
b=1

p−1∑
c=0

p−1∑
e=0

4+b3+c3+3ce2≡0 mod p

χ2(3b)χ2 (b + c + 1) −
p−1∑
b=1

p−1∑
c=0

p−1∑
e=0

χ2 (3b) χ2 (b + c + 1)

+p2 + p

p
p−1∑
c=1

4+c3≡0 mod p

χ2(3c)χ2(c + 1) −
p−1∑
c=1

χ2(3c)χ2(c + 1)


= p2

p−1∑
b=1

4+b3≡0 mod p

χ2(3b)χ2 (b + 1) + p
p−1∑
b=1

p−1∑
c=1

p−1∑
e=0

4+b3+c3+3ce2≡0 mod p

χ2(3b)χ2 (b + c + 1)

+p2 + p2 ·

p−1∑
c=1

4+c3≡0 mod p

χ2(3c)χ2(c + 1) + p · χ2(3)

= 2χ2(3) · p2
p−1∑
b=1

4+b3≡0 mod p

χ2(b)χ2 (b + 1) + p2 + χ2(3) · p

+p ·
p−1∑
b=1

p−1∑
c=1

(
1 + χ2

(
−3c

(
4 + b3 + c3

)))
χ2(b + c + 1)χ2(3b)

= 2χ2(3) · p2
p−1∑
b=1

4+b3≡0 mod p

χ2(b)χ2 (b + 1) + p2 + χ2(3) · p

−p
p−1∑
b=1

χ2(b + 1)χ2(3b) + p
p−1∑
b=1

p−1∑
c=1

χ2(−bc)χ2

(
b3 + c3 + 4

)
χ2(b + c + 1)

= χ2(3) · 2 · p2 ·

p−1∑
b=1

4+b3≡0 mod p

χ2(b)χ2 (b + 1) + p2 + χ2(3) · 2 · p
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+χ2(−1) · p ·
p−1∑
b=1

p−1∑
c=1

χ2(bc)χ2

(
b3 + c3 + 4

)
χ2(b + c + 1).

This proves Lemma 2.
Lemma 3. Let p be an odd prime, then we have the identity

p−1∑
b=1

p−1∑
c=0

b3+4c3−4≡0 mod p

χ2 (b) χ2 (b + c − 1)

= −2 + χ2(−3) · δ(p) −
p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1) .

Proof. From the properties of the complete residue system modulo p we have

p−1∑
b=1

p−1∑
c=0

b3+4c3−4≡0 mod p

χ2 (b) χ2 (b + c − 1) =

p−1∑
b=1

p−1∑
c=0

b3+4(c+1)3−4≡0 mod p

χ2 (b) χ2 (b + c)

=

p−1∑
b=1

p−1∑
c=1

b3+4c3+12c2+12c≡0 mod p

χ2 (b) χ2 (b + c) =

p−1∑
b=1

p−1∑
c=1

b3+4+12c+12c2≡0 mod p

χ2 (b) χ2 (b + 1)

=

p−1∑
b=1

p−1∑
c=0

b3+1+3(2c+1)2≡0 mod p

χ2 (b) χ2 (b + 1) −
p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1)

=

p−1∑
b=1

p−1∑
c=0

b3+1+3c2≡0 mod p

χ2 (b) χ2 (b + 1) −
p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1)

=

p−1∑
b=1

(
1 + χ2

(
−3b3 − 3

))
χ2(b)χ2(b + 1) −

p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1)

=

p−1∑
b=1

χ2

(
1 + b

)
+ χ2(−3)

p−2∑
b=1

χ2

(
b − 1 + b

)
−

p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1)

= −2 + χ2(−3) · δ(p) −
p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1) .

This proves Lemma 3.
Lemma 4. Let p be a prime. Then we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3 − 1

)
χ2 (a + b + c − d − e − 1)
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= χ2(−1)
(
4p2 − p

)
· δ(p) − χ2(3) ·

(
8p2 − p

)
− p2

−χ2(−1) · p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
a3 + b3 + 4

)
χ2(ab)χ2 (a + b + 1)

−2χ2(3) · p2 ·

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)

+χ2(3) · p2 ·

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
.

Proof. From the properties of the complete residue system modulo p we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3 − 1

)
χ2 (a + b + c − d − e − 1)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
(a + d)3 + (b + e)3 + c3 − d3 − e3 − 1

)
χ2 (a + b + c − 1)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + 3a(2d + a)2 + b3 + 3b(2e + b)2 + 4c3 − 4

)
×χ2 (a + b + c − 1)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + 3ad2 + b3 + 3be2 + 4c3 − 4

)
χ2 (a + b + c − 1)

=

p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + 3ad2 + b3 + 3be2 + 4c3 − 4

)
χ2 (a + b + c − 1)

+p ·
p−1∑
b=0

p−1∑
c=0

p−1∑
e=0

χ2

(
b3 + 3be2 + 4c3 − 4

)
χ2 (b + c − 1) . (2.3)

From (2.2) and the properties of the quadratic residue modulo p we have

p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + 3ad2 + b3 + 3be2 + 4c3 − 4

)
χ2 (a + b + c − 1)

= p ·
p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

p−1∑
e=0

a3+b3+3be2+4c3−4≡0 mod p

χ2(3a)χ2 (a + b + c − 1)

−

p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

p−1∑
e=0

χ2(3a)χ2 (a + b + c − 1)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

p−1∑
e=0

a3+b3+3be2+4c3−4≡0 mod p

χ2(3a)χ2 (a + b + c − 1)

AIMS Mathematics Volume 6, Issue 7, 6961–6974.



6968

+p2 ·

p−1∑
a=1

p−1∑
c=0

a3+4c3−4≡0 mod p

χ2(3a)χ2 (a + c − 1)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

(
1 + χ2

(
4 − a3 − b3 − 4c3

)
χ2(3b)

)
χ2(3a)χ2 (a + b + c − 1)

+p2 ·

p−1∑
a=1

p−1∑
c=1

a3+4c3+12c2+12c≡0 mod p

χ2(3a)χ2 (a + c)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

χ2

(
4 − a3 − b3 − 4c3

)
χ2(ab)χ2 (a + b + c − 1)

+χ2(3) · p2 ·

p−1∑
a=1

p−1∑
c=1

a3+4+12c+12c2
≡0 mod p

χ2(a)χ2 (a + 1)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

χ2

(
−a3 − b3 − 4c3 − 12c2 − 12c

)
χ2(ab)χ2 (a + b + c)

+χ2(3) · p2 ·

p−1∑
a=1

p−1∑
c=1

a3+1+3(2c+1)2≡0 mod p

χ2(a)χ2 (a + 1)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

χ2

(
−a3 − b3 − 4c3 − 12c2 − 12c

)
χ2(ab)χ2 (a + b + c)

+p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
−a3 − b3

)
χ2(ab)χ2 (a + b)

+χ2(3) · p2 ·


p−1∑
a=1

p−1∑
c=0

a3+1+3c2≡0 mod p

χ2(a)χ2 (a + 1) −
p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)


= p ·

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

χ2

(
−a3 − b3 − 1 − 3(2c + 1)2

)
χ2(ab)χ2 (a + b + 1)

+p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
−a3 − 1

)
χ2(a)χ2 (a + 1) − χ2(3)p2

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)

+χ2(3) · p2 ·

p−1∑
a=1

(
1 + χ2

(
−3a3 − 3

))
χ2(a)χ2(a + 1)

= p ·
p−1∑
a=1

p−1∑
b=1

p−1∑
c=0

χ2

(
−a3 − b3 − 1 − 3c2

)
χ2(ab)χ2 (a + b + 1)
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−p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
−a3 − b3 − 4

)
χ2(ab)χ2 (a + b + 1)

+p(p − 1) ·
p−2∑
a=1

χ2(−1)χ2 (a − 1 + a) − χ2(3)p2
p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)

+χ2(3) · p2 ·

p−1∑
a=1

χ2(a)χ2(a + 1) + p2 ·

p−2∑
a=1

χ2(−1)χ2 (a − 1 + a)

= p2 ·

p−1∑
a=1

p−1∑
b=1

a3+b3+1≡0 mod p

χ2(−3ab)χ2 (a + b + 1) − p ·
p−1∑
a=1

p−1∑
b=1

χ2(−3ab)χ2 (a + b + 1)

−p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
−a3 − b3 − 4

)
χ2(ab)χ2 (a + b + 1)

+p(2p − 1) ·
p−2∑
a=1

χ2(−1)χ2 (a − 1 + a) + χ2(3) · p2 ·

p−1∑
a=1

χ2(a)χ2(a + 1)

−χ2(3)p2
p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1) . (2.4)

It is easy to prove that

p−1∑
a=1

p−1∑
b=1

χ2(ab)χ2(a + b + 1) =

p−1∑
a=1

p−1∑
b=0

χ2(ab)χ2(a + b + 1)

=

p−1∑
a=1

p−1∑
b=0

χ2(a(b − 1))χ2(a + b) = χ2(−1)(p − 1) +

p−1∑
a=1

p−1∑
b=1

χ2(a(b − 1))χ2(a + 1)

= χ2(−1)(p − 1) − χ2(−1)
p−1∑
a=1

χ2(a)χ2(a + 1) = χ2(−1) · p. (2.5)

Combining (2.4), (2.5) and Lemma 1 we can deduce that

p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + 3ad2 + b3 + 3be2 + 4c3 − 4

)
χ2 (a + b + c − 1)

= χ2(−1) · (3p2 − p) · δ(p) − χ2(3) ·
(
5p2 − p

)
−χ2(−1) · p ·

p−1∑
a=1

p−1∑
b=1

χ2

(
a3 + b3 + 4

)
χ2(ab)χ2 (a + b + 1)

+χ2(3) · p2 ·

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
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−χ2(3) · p2 ·

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1) . (2.6)

Similarly, applying Lemma 3 we have

p−1∑
b=0

p−1∑
c=0

p−1∑
e=0

χ2

(
b3 + 3be2 + 4c3 − 4

)
χ2 (b + c − 1)

=

p−1∑
b=1

p−1∑
c=0

p−1∑
e=0

χ2

(
b3 + 3be2 + 4c3 − 4

)
χ2 (b + c − 1) + p ·

p−1∑
c=1

χ2(c2 + 3c + 3)

= p ·
p−1∑
b=1

p−1∑
c=0

b3+4c3−4≡0 mod p

χ2(3b)χ2 (b + c − 1) −
p−1∑
b=1

p−1∑
c=0

χ2(3b)χ2 (b + c − 1)

+p ·
p−1∑
c=0

χ2

(
(2c + 3)2 + 3

)
− χ2(3)p

= −3χ2(3)p − p + χ2(−1)pδ(p) − χ2(3)p
p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1) . (2.7)

Combining (2.3), (2.6) and (2.7) we may immediately deduce the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3 − 1

)
χ2 (a + b + c − d − e − 1)

= χ2(−1) · (3p2 − p) · δ(p) − χ2(3) ·
(
5p2 − p

)
−χ2(−1) · p ·

p−1∑
a=1

p−1∑
b=1

χ2

(
a3 + b3 + 4

)
χ2(ab)χ2 (a + b + 1)

+χ2(3) · p2 ·

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
−χ2(3) · p2 ·

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)

−3χ2(3)p2 − p2 + χ2(−1) · p2 · δ(p) − χ2(3) · p2 ·

p−1∑
b=1

b3+4≡0 mod p

χ2 (b) χ2 (b + 1)

= χ2(−1)
(
4p2 − p

)
· δ(p) − χ2(3) ·

(
8p2 − p

)
− p2

−χ2(−1) · p ·
p−1∑
a=1

p−1∑
b=1

χ2

(
a3 + b3 + 4

)
χ2(ab)χ2 (a + b + 1)
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−2χ2(3) · p2 ·

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1)

+χ2(3) · p2 ·

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
.

This proves Lemma 4.

3. Results

In this paper, we will use the elementary methods and the properties of the character sums of the
polynomials to study (1.2) with h = 3, and prove the following:
Theorem. Let p > 3 be an odd prime, then we have the identity

p−1∑
m=1

χ2(m)

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

=

{
p3 (4δ(p) + β(p) − 10) if p ≡ 1 mod 6;
p3 (4δ(p) − β(p) + 10) if p ≡ −1 mod 6.

where δ(p) =

p−1∑
a=1

(
a − 1 + a

p

)
, β(p) =

p−1∑
a=0

(
(a2 − a + 1)(a3 + 4)

p

)
.

Proof. Applying several basic lemmas in section 2, we can easily complete the proof of our theorem.
In fact, for any odd prime p > 3 we have

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= τ(χ2) ·
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

p−1∑
f =0

χ2

(
a3 + b3 + c3 − d3 − e3 − f 3

)
×e

(
a + b + c − d − e − f

p

)
= τ(χ2) ·

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3

)
e
(
a + b + c − d − e

p

)

+τ2(χ2) ·
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3 − 1

)
×χ2 (a + b + c − d − e − 1)

= τ2(χ2) ·
p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
1 + b3 + c3 − d3 − e3

)
χ2 (1 + b + c − d − e)

+τ2(χ2) ·
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

χ2

(
a3 + b3 + c3 − d3 − e3 − 1

)
×χ2 (a + b + c − d − e − 1) +

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

, (3.1)
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where τ(χ) =

p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums.

Note that β(p) =

p−1∑
a=0

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
=

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
+ 2, if p ≡ 1 mod

12, then τ2(χ2) = p and χ2(3) = χ2(−1) = 1. From (1.1), (3.1), Lemma 2 and Lemma 4 we have

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= χ2(3) · 2 · p3 ·

p−1∑
b=1

4+b3≡0 mod p

χ2(b)χ2 (b + 1) + p3 + χ2(3) · 2 · p2

+χ2(−1) · p2 ·

p−1∑
b=1

p−1∑
c=1

χ2(bc)χ2

(
b3 + c3 + 4

)
χ2(b + c + 1)

+χ2(−1) ·
(
4p3 − p2

)
· δ(p) − χ2(3) ·

(
8p3 − p2

)
− p3

−χ2(−1) · p2 ·

p−1∑
a=1

p−1∑
b=1

χ2

(
a3 + b3 + 4

)
χ2(ab)χ2 (a + b + 1)

+χ2(3) · p3 ·

p−2∑
a=1

χ2

(
a2 − a + 1

)
χ2

(
a3 + 4

)
−2χ2(3) · p3 ·

p−1∑
a=1

a3+4≡0 mod p

χ2(a)χ2 (a + 1) + p2 · (δ(p) − 3)

= p3 · (4δ(p) + β(p) − 10) . (3.2)

Similarly, if p ≡ 5 mod 12, then τ2(χ2) = p, χ2(−1) = 1, χ2(3) = −1. From (1.1), (3.1), Lemma 2 and
Lemma 4 we have

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p3 · (4δ(p) − β(p) + 10) . (3.3)

If p ≡ 7 mod 12, then τ2(χ2) = −p, χ2(−1) = −1, χ2(3) = −1. From (1.1), (3.1), Lemma 2 and Lemma
4 we have

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p3 · (4δ(p) + β(p) − 10) . (3.4)

If p ≡ 11 mod 12, then τ2(χ2) = −p, χ2(−1) = −1, χ2(3) = 1. From (1.1), (3.1), Lemma 2 and Lemma
4 we have

p−1∑
m=1

χ2(m) ·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p3 · (4δ(p) − β(p) + 10) . (3.5)
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Combining (3.2), (3.3), (3.4) and (3.5) we have the identity

p−1∑
m=1

χ2(m)

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

=

{
p3 (4δ(p) + β(p) − 10) if p ≡ 1 mod 6;
p3 (4δ(p) − β(p) + 10) if p ≡ −1 mod 6.

This completes the proof of our theorem.
It is clear that from the A. Weil’s work [12] we have the estimate |δ(p)| ≤ 2

√
p and |β(p)| ≤ 5

√
p.

So from this theorem we can also deduce the following:
Corollary. Let p be an odd prime, then we have the estimate∣∣∣∣∣∣∣∣

p−1∑
m=1

(
m
p

)
·

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6∣∣∣∣∣∣∣∣ ≤ 13 · p

7
2 ·

(
1 +

1
√

p

)
.

Some notes: It is clear that the trivial estimate of G(3, p) is p4. From our corollary we know that
the estimate in our theorem is at most p

7
2 . It saves a square root of p. This sharp estimate maybe have

some good applications in some problems of analytic number theory. For example,

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
m2 · a3 + a

p

)∣∣∣∣∣∣∣
6

=

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
r · m2 · a3 + a

p

)∣∣∣∣∣∣∣
6

+ O
(
p

7
2
)
,

where r is any quadratic non-residue modulo p.
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