Processing math: 89%
Research article Special Issues

A note on degenerate derangement polynomials and numbers

  • In this paper, we study the degenerate derangement polynomials and numbers, investigate some properties of those polynomials and numbers and explore their connections with the degenerate gamma distributions. In more detail, we derive their explicit expressions, recurrence relations and some identities involving the degenerate derangement polynomials and numbers and other special polynomials and numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also show that those polynomials and numbers are connected with the moments of some variants of the degenerate gamma distributions.

    Citation: Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang. A note on degenerate derangement polynomials and numbers[J]. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380

    Related Papers:

    [1] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [2] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [3] Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213
    [4] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221
    [5] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [6] Talha Usman, Mohd Aman, Owais Khan, Kottakkaran Sooppy Nisar, Serkan Araci . Construction of partially degenerate Laguerre-Genocchi polynomials with their applications. AIMS Mathematics, 2020, 5(5): 4399-4411. doi: 10.3934/math.2020280
    [7] Taekyun Kim, Dae San Kim, Hye Kyung Kim . Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 2022, 7(9): 17357-17368. doi: 10.3934/math.2022956
    [8] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of (q,h)-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
    [9] Aimin Xu . Some identities involving derangement polynomials and r-Bell polynomials. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
    [10] Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate r-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322
  • In this paper, we study the degenerate derangement polynomials and numbers, investigate some properties of those polynomials and numbers and explore their connections with the degenerate gamma distributions. In more detail, we derive their explicit expressions, recurrence relations and some identities involving the degenerate derangement polynomials and numbers and other special polynomials and numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also show that those polynomials and numbers are connected with the moments of some variants of the degenerate gamma distributions.



    A derangement is a permutation with no fixed points. In other words, a derangement is a permutation of the elements of a set that leaves no elements in their original places. The number of derangements of a set of size n is called the n-th derangement number and denoted by dn. The first few terms of the derangement number sequence {dn}n=0 are d0=1, d1=0, d2=1, d3=2, d4=9,. It was Pierre Rémonde de Motmort who initiated the study of counting derangements in 1708 (see [1]).

    Carlitz was the first one who studied degenerate versions of some special polynomials and numbers, namely the degenerate Bernoulli polynomials and numbers and degenerate Euler polynomials and numbers. In recent years, the study of various degenerate versions of some special polynomials and numbers regained the interests of quite a few mathematicians and yielded many interesting arithmetical and combinatorial results. It is remarkable that the study of degenerate versions is not just limited to polynomials but can be extended to transcendental functions like gamma functions (see [9,14]).

    The aim of this paper is to study the degenerate derangement polynomials, which are a degenerate version of the derangement polynomials. Here the derangement polynomials are a natural extension of the derangement numbers. In more detail, we derive their explicit expressions, recurrence relations and some identities involving those polynomials and numbers and other special polynomials and numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also introduce the higher-order degenerate derangement polynomials. Then we explore the degenerate gamma distributions as a degenerate version of the gamma distributions. We show that the moments of distributions coming from some variants of degenerate gamma distributions are related to the degenerate derangement polynomials or the degenerate derangement numbers or the higher-order degenerate derangement polynomials.

    For the rest of this section, we recall the necessary facts about the degenerate derangement polynomials and numbers and the degenerate exponential functions.

    As is well known, the generating function of the derangement numbers is given by

    11tet=n=0dntnn!,(see [1,3,4,8,12,13]). (1.1)

    From (1.1), we note that

    dn=n!ni=0(1)ii!,(n0),(see [8,10,12,13]). (1.2)

    The derangement polynomials are defined by the generating function as

    11te(x1)t=n=0dn(x)tnn!,(see [12,13]). (1.3)

    By (1.3), we get

    dn(x) = nl=0(nl)dlxnl= n!nl=0(x1)ll!,(n0). (1.4)

    Clearly, we have dn(0)=dn.

    For any nonzero real number λ, the degenerate exponential function is defined as

    exλ(t)=(1+λt)xλ=n=0(x)n,λn!tn,(see [2,5,9,11,16]), (1.5)

    where (x)0,λ=1, (x)n,λ=x(xλ)(x(n1)λ),(n1).

    For brevity we denote e1λ(t) by eλ(t). In this paper, we study the degenerate derangement polynomials which are derived from the degenerate exponential function.

    From the definition of degenerate derangement polynomials, we investigate some properties and recurrence relations and new identities associated with special numbers and polynomials.

    In light of (1.3), we may consider the degenerate derangement polynomials which are given by

    11tex1λ(t)=n=0dn,λ(x)tnn!. (2.1)

    When x=0, dn,λ=dn,λ(0) are called the degenerate derangement numbers.

    From (1.5) and (2.1), we get

    n=0dn,λ(x)tnn! = l=0tlm=0(x1)m,λtmm!= n=0(n!nm=0(x1)m,λm!)tnn!. (2.2)

    Comparing the coefficients on both sides of (2.2), we obtain the following proposition.

    Proposition 1. For n0, we have

    dn,λ(x)=n!nl=0(x1)l,λl!. 

    In particular, for x=0, we obtain

    dn,λ=n!nl=0(1)l,λl!. 

    Now, we observe that

    ex1λ(t)=1+n=1(dn,λ(x)ndn1,λ(x))tnn!. (2.3)

    From (1.5) and (2.3), we have

    (x1)n,λ=dn,λ(x)ndn1,λ(x), (2.4)

    and

    (1)n,λ=dn,λndn1,λ,(n1). 

    In addition, by (2.1), we get

    dn,λ(x)=nl=0(nl)dl,λ(x)nl,λ,(n0). (2.5)

    Therefore, by (2.5), we obtain the following theorem.

    Theorem 2. The following identities hold true:

    dn,λ(x)=nl=0(nl)dl,λ(x)nl,λ,(n0),(x1)n,λ=dn,λ(x)ndn1,λ(x),(n1),(1)n,λ=dn,λndn1,λ,(n1).

    Replacing t by 1eλ(t) in (2.1), we get

    ex1λ(1eλ(t)) = eλ(t)l=0dl,λ(x)1l!(1eλ(t))l= m=0(1)m,λm!tmj=0jl=0(1)ldl,λ(x)S2,λ(j,l)tjj!= n=0(nj=0jl=0(nj)(1)nj,λ(1)ldl,λ(x)S2,λ(j,l))tnn!. (2.6)

    Here S2,λ(n,l), (nl), are the degenerate Stirling numbers of the second kind given either by

    (x)n,λ=nl=0S2,λ(n,l)(x)l,(n0), 

    or by

    1m!(eλ(t)1)m=n=mS2,λ(n,m)tnn!,(m0),(see [7]), 

    where (x)0=1, (x)n=x(x1)(xn+1), (n1). Alternatively, (2.6) is also given by

    ex1λ(1eλ(t)) = m=0(x1)m,λ1m!(1eλ(t))m= n=0(nm=0(x1)m,λ(1)mS2,λ(n,m))tnn!. (2.7)

    Therefore, by (2.6) and (2.7), we obtain the following theorem.

    Theorem 3. For n0, we have

    nj=0jl=0(nj)(1)nj,λ(1)ldl,λ(x)S2,λ(j,l)=nj=0(x1)j,λ(1)jS2,λ(n,j). 

    Recently, the degenerate Fubini polynomials are introduced as

    11y(eλ(t)1)=n=0Fn,λ(y)tnn!,(see [11,15]). (2.8)

    Note that limλ0Fn,λ(y)=Fn(y) are the ordinary Fubini polynomials (see [6]). Replacing t by eλ(t)1 in (2.1), we get

    12eλ(t)ex1λ(eλ(t)1) = l=0dl,λ(x)1l!(eλ(t)1)l= n=0(nl=0S2,λ(n,l)dl,λ(x))tnn!. (2.9)

    In terms of (2.8), we note that (2.9) is also given by

    12eλ(t)ex1λ(eλ(t)1) = l=0Fl,λ(1)tll!m=0(x1)m,λ1m!(eλ(t)1)m = l=0Fl,λ(1)tll!j=0jm=0(x1)m,λS2,λ(j,m)tjj! = n=0(nl=0lm=0(nl)Fnl,λ(1)(x1)m,λS2,λ(l,m))tnn!. (2.10)

    Therefore, by (2.9) and (2.10), we obtain the following theorem.

    Theorem 4. For n0, we have

    nl=0S2,λ(n,l)dl,λ(x)=nl=0lm=0(nl)Fnl,λ(1)(x1)m,λS2,λ(l,m). 

    Let logλ(t) be the compositional inverse function of eλ(t). Recall that the degenerate Stirling numbers of the first kind are defined either by

    (x)n=nl=0S1,λ(n,l)(x)l,λ,(n0), 

    or by

    1m!(logλ(1+t))m=n=mS1,λ(n,m)tnn!,(m0),(see [7,14]). 

    Replacing t by logλ(1+t) in (2.8) with y=1, we get

    11t = l=0Fl,λ(1)1l!(logλ(1+t))l= n=0(nl=0Fl,λ(1)S1,λ(n,l))tnn!. (2.11)

    Writing the left hand side of (2.11) differently, we have

    11t = (11te1λ(t))eλ(t)=l=0dl,λtll!m=0(1)m,λtmm!= n=0(nl=0(nl)dl,λ(1)nl,λ)tnn!. (2.12)

    Therefore, by (2.1), (2.11) and (2.12), we obtain the following theorem.

    Theorem 5. For n0, we have

    n!=nl=0Fl,λ(1)S1,λ(n,l)=nl=0(nl)dl,λ(1)nl,λ=nl=0(nl)dl,λ(x)(1x)nl,λ. 

    Recently, Kim-Kim considered the fully degenerate Bell polynomials given by

    eλ(x(eλ(t)1))=n=0Beln,λ(x)tnn!,(see [2]). (2.13)

    Replacing t by logλ(1+t) in (2.13) with x=1, we get

    eλ(t) = m=0Belm,λ1m!(logλ(1+t))m= m=0Belm,λn=mS1,λ(n,m)tnn!= n=0(nm=0Belm,λS1,λ(n,m))tnn!. (2.14)

    Obviously, (2.14) is also given by

    eλ(t)=n=0(1)n,λtnn!. (2.15)

    Therefore, by (2.14) and (2.15), we obtain the following theorem.

    Theorem 6. For n0, we have

    (1)n,λ=nm=0Belm,λS1,λ(n,m), 

    and

    Beln,λ=nm=0(1)m,λS2,λ(n,m). 

    We observe that

    11t = e1λ(logλ(1t)) = m=0(1)m,λ1m!(logλ(1t))m= m=0(1)m,λn=m(1)nS1,λ(n,m)tnn!=n=0(nm=0(1)m,λ(1)nS1,λ(n,m))tnn!. (2.16)

    From Theorem 5 and (2.16), we obtain

    n!=(1)nnm=0(1)m,λS1,λ(n,m)=nm=0(nm)dm,λ(x)(1x)nm,λ. 

    Replacing t by logλ(1t) in (2.13) with x=1, we get

    eλ(t) = k=0Belk,λ1k!(logλ(1t))k= k=0Belk,λn=kS1,λ(n,k)(1)ntnn!= n=0(nk=0Belk,λS1,λ(n,k)(1)n)tnn!. (2.17)

    We remark that (2.17) is alternatively given by

    eλ(t) = e1λ(t) = n=0(1)n,λtnn!. (2.18)

    Thus, from (2.17) and (2.18), we have

    nk=0Belk,λS1,λ(n,k) = (1)n(1)n,λ,(n0). (2.19)

    Replacing t by 1eλ(t) in (2.1) with x=0, we get

    e1λ(t)e1λ(1eλ(t)) = m=0dm,λ(1)mm!(eλ(t)1)m= m=0dm,λ(1)mn=mS2,λ(n,m)tnn!= n=0(nm=0dm,λ(1)mS2,λ(n,m))tnn!. (2.20)

    An alternative expression of (2.20) is given by

    e1λ(t)e1λ(1eλ(t)) = e1λ(t)eλ(eλ(t)1)= l=0(1)l,λtll!m=0Belm,λtmm!= n=0(nm=0(nm)Belm,λ(1)nm,λ)tnn!. (2.21)

    From (2.20) and (2.21), we have

    nm=0(1)mdm,λS2,λ(n,m)=nm=0(nm)Belm,λ(1)nm,λ,(n0). (2.22)

    Therefore, by (2.19) and (2.22), we obtain the following theorem.

    Theorem 7. For n0, we have

    nm=0(1)mdm,λS2,λ(n,m)=nm=0(nm)Belm,λ(1)nm,λ. 

    In addition, we have

    nk=0Belk,λS1,λ(n,k)=(1)n(1)n,λ,(n0). 

    For rN, we define the degenerate derangement polynomials of order r which are given by

    1(1t)rex1λ(t)=n=0d(r)n(x)tnn!. (2.23)

    When x=0, d(r)n(0) are called the degenerate derangement numbers of order r.

    From (2.23), we note that

    n=0d(r)n(x)tnn! = m=0(r+m1m)tml=0(x1)l,λtll!= n=0(n!nl=0(x1)l,λl!(r+nl1nl))tnn!. (2.24)

    Comparing the coefficients on both sides of (2.24), we obtain the following theorem.

    Theorem 8. For n0, we have

    d(r)n(x)=n!nl=0(x1)l,λl!(r+nl1nl). 

    In particular, for x=0, we have

    d(r)n=n!nl=0(1)l,λl!(r+nl1nl). 

    By (2.1), we get

    11+te1λ(t)=m=0dm,λ(1)mtmm!. (2.25)

    Replacing t by eλ(t)1 in (2.25), we get

    e1λ(1eλ(t)) = eλ(t)m=0dm,λ(1)m1m!(eλ(t)1)m= eλ(t)m=0dm,λ(1)mj=mS2,λ(j,m)tjj!= l=0(1)l,λtll!j=0(jm=0(1)mdm,λS2,λ(j,m))tjj!= n=0(nj=0jm=0(nj)(1)nj,λ(1)mdm,λS2,λ(j,m))tnn!. (2.26)

    Alternatively, (2.26) is also given by

    e1λ(1eλ(t))=eλ(eλ(t)1)=n=0Beln,λ(1)tnn!. (2.27)

    Therefore, by (2.26) and (2.27), we obtain the following theorem.

    Theorem 9. For n0, we have

    Beln,λ(1)=nj=0jm=0(nj)(1)nj,λ(1)mdm,λS2,λ(j,m). 

    Let f(x) be the probability density function of the continuous random variable X, and let g(x) be a real valued function. Then the expectation of g(X), E[g(X)], is defined by

    E[g(X)]=g(x)f(x)dx,(see [18]). (3.1)

    A continuous random variable X, whose density function is given by

    f(x)={βeβx(βx)α1Γ(α),if x0,0, if x<0, (3.2)

    for some β>0 and α>0, is said to be the gamma random variable with parameters α,β and denoted by XΓ(α,β).

    Let XΓ(1,1). Then, for all t<1, we have

    E[eXte1λ(t)] = e1λ(t)0extexdx= 11te1λ(t) = n=0dn,λtnn!. (3.3)

    Clearly, we also have

    E[eXte1λ(t)]=n=0(nm=0(nm)(1)nm,λE[Xm])tnn!. (3.4)

    Therefore, by (3.3) and (3.4), we obtain the following equations.

    For n0, we have

    nm=0(nm)(1)nm,λE[Xm]=dn,λ, 

    and, more generally, we also have

    nm=0(nm)(x1)nm,λE[Xm]=dn,λ(x). 

    Unless otherwise stated, for the rest of this section we assume that λ(0,1). The degenerate gamma function Γλ(x), which is initially defined for 0<Re(s)<1λ by the following integral

    Γλ(s)=0e1λ(t)ts1dt,(see [9,14]), (3.5)

    can be continued to a meromorphic function on C, whose only singularities are simple poles at s=0,1,2,,1λ,1λ+1,1λ+2,. Thus, by (3.5), we get

    Γλ(k)=Γ(k)(1)k+1,λ,(kN, λ(0,1k)), (3.6)

    and, in particular, we have

    Γλ(1)=11λ,(see [9]). 

    A random variable X=Xλ is said to have the degenerate gamma distribution with parameters α and β, (1λ>α>0, β>0), and denoted by XΓλ(α,β), if its probability density function has the form

    fλ(x)={1Γλ(α)β(βx)α1e1λ(βx),if x0,0,otherwise. 

    Note that ddxecλ(x)=cecλλ(x), for any constant c. Then, for XΓλ(1,1), we have

    E[etλλ(X)] = (1λ)0etλλ(x)e1λ(x)dx= (1λ)0et1λλ(x)dx = 11λ11te1λ(t)eλ(t)= (1λ)l=0dl,λtll!m=0(1)m,λtmm!= n=0(1λ)nl=0dl,λ(1)nl,λ(nl)tnn!. (3.7)

    Evidently, we also have

    E[etλλ(X)] = E[11+λX(1+λX)tλ]= n=0E[11+λX(1λlog(1+λX))n]tnn!. (3.8)

    Therefore, (3.7) and (3.8), we obtain the following theorem.

    Theorem 10. For X\sim\Gamma_{\lambda}(1, 1) , we have

    \begin{array}{l} E\bigg[\frac{1}{1+\lambda X}\bigg(\frac{1}{\lambda}\log(1+\lambda X)\bigg)^{n}\bigg] = (1-\lambda)\sum\limits_{l = 0}^{n}d_{l, \lambda}(1)_{n-l, \lambda}\binom{n}{l}. \end{array}\

    Now, we observe that

    \begin{array}{l} \big(\log(1+\lambda X)\big)^{n} = n!\sum\limits_{m = n}^{\infty}S_{1}(m, n)\frac{\lambda^{m}}{m!}X^{m}, \quad (n\ge 0), \end{array}\

    where S_{1}(n, m) are the Stirling numbers of the first kind, (see [17,19,20]). In turn, we have

    \begin{equation} E\bigg[\frac{1}{1+\lambda X}\bigg(\frac{1}{\lambda}\log(1+\lambda X)\bigg)^{n}\bigg] = \frac{n!}{\lambda^n}\sum\limits_{m = n}^{\infty}S_{1}(m, n)\frac{\lambda^{m}}{m!}E\bigg[\frac{X^{m}}{1+\lambda X}\bigg]. \end{equation} (3.9)

    From Theorem 11 and (3.9), we have

    \begin{array}{l} \sum\limits_{n = m}^{\infty}S_{1}(n, m)\frac{\lambda^{m}}{m!}E\bigg[\frac{X^{m}}{1+\lambda X}\bigg] = (1-\lambda)\frac{\lambda^n}{n!}\sum\limits_{l = 0}^{n}d_{l, \lambda}(1)_{n-l, \lambda}\binom{n}{l}, \quad(n\ge 0), \end{array}\

    where X\sim\Gamma_{\lambda}(1, 1) .

    For X_{1}, X_{2}, \dots, X_{r}\sim\Gamma(1, 1) , assume that X_{1}, X_{2}, \dots, X_{r} are independent. Then we have

    \begin{align} E\big[e^{(X_{1}+X_{2}+\cdots+X_{r})t}e_{\lambda}^{x-1}(t)\big]\ & = \ E\big[e^{X_{1}t}\big] E\big[e^{X_{2}t}\big]\cdots E\big[e^{X_{r}t}\big]\cdot e_{\lambda}^{x-1}(t) \\ & = \ \underbrace{\bigg(\frac{1}{1-t}\bigg)\times\bigg(\frac{1}{1-t}\bigg)\times\cdots\times\bigg(\frac{1}{1-t}\bigg)}_{r-\mathrm{times}}e_{\lambda}^{x-1}(t) \\ & = \ \sum\limits_{n = 0}^{\infty}d_{n}^{(r)}(x)\frac{t^{n}}{n!}. \end{align} (3.10)

    Alternatively, (3.10) is given by

    \begin{align} &E\big[e^{(X_{1}+\cdots+X_{r})t}e_{\lambda}^{x-1}(t)\big] \\ &\quad = \ \sum\limits_{l = 0}^{\infty}E\big[(X_{1}+\cdots+X_{r})^{l}\big]\frac{t^{l}}{l!}\sum\limits_{m = 0}^{\infty}(x-1)_{m, \lambda}\frac{t^{m}}{m!} \\ &\quad = \ \sum\limits_{n = 0}^{\infty}\bigg(\sum\limits_{l = 0}^{n}\binom{n}{l}E\big[(X_{1}+\cdots+X_{r})^{l}\big](x-1)_{n-l, \lambda}\bigg)\frac{t^{n}}{n!}. \end{align} (3.11)

    By (3.10) and (3.11), we get

    \begin{array}{l} d_{n, \lambda}^{(r)}(x) = \sum\limits_{l = 0}^{n}\binom{n}{l}E\big[(X_{1}+\cdots+X_{r})^{l}\big](x-1)_{n-l, \lambda}, \quad(n\ge 0). \end{array}\

    In this paper, we have dealt with the degenerate derangement polynomials d_{n, \lambda}(x) , which are a degenerate version of the derangement polynomials d_n(x) . We derived their explicit expressions, recurrence relations and some identities involving those polynomials and numbers and other special polynomials and numbers such as the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also introduced the higher-order degenerate derangement polynomials. Then we explored the degenerate gamma distributions as a degenerate version of the gamma distributions and showed that the moments of distributions coming from some variants of degenerate gamma distributions are related to the degenerate derangement polynomials or the degenerate derangement numbers or the higher-order degenerate derangement polynomials.

    In recent years, the study of many special numbers and polynomials has been carried out by using several different methods, which include generating functions, combinatorial methods, umbral calculus, p -adic analysis, probability theory, special functions and differential equations. Moreover, the same has been done for various degenerate versions of quite a few special numbers and polynomials. Motivations for studying degenerate versions arise from their interests not only in combinatorial and arithmetical properties but also in their applications to symmetric identities, differential equations and probability theories.

    It is one of our future projects to continue to investigate many ordinary and degenerate special numbers and polynomials by various means and to find their applications in physics, science and engineering as well as in mathematics.

    We would like to thank the referees for valuable suggestions that helped improve the original manuscript in its present form.

    The authors declare no conflict of interest.



    [1] L. Carlitz, The number of derangements of a sequence with given specification, Fibonacci Quart., 16 (1978), 255–258.
    [2] D. V. Dolgy, D. S. Kim, T. Kim, J. Kwon, On fully degenerate Bell numbers and polynomials, Filomat, 2020. Available from: http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/10239.
    [3] D. M. Jackson, Laguerre polynomials and derangements, Math. Proc. Cambridge Philos. Soc., 80 (1976), 213–214. doi: 10.1017/S030500410005283X
    [4] A. W. Joseph, A problem in derangements, J. Inst. Actuaries Students' Soc., 6 (1946), 14–22.
    [5] W. A. Khan, A new class of degenerate Frobenius-Euler-Hermite polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 28 (2018), 567–576.
    [6] N. Kilar, Y. Simsek, A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials, J. Korean Math. Soc., 54 (2017), 1605–1621.
    [7] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. doi: 10.1134/S1061920820020090
    [8] T. Kim, D. S. Kim, Some identities on derangement and degenerate derangement polynomials, In: Advances in mathematical inequalities and applications, Singapore: Birkhäuser/Springer, 2018,265–277.
    [9] T. Kim, D. S. Kim, Note on the degenerate Gamma function, Russ. J. Math. Phys., 27 (2020), 352–358. doi: 10.1134/S1061920820030061
    [10] T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon, Some identities of derangement numbers, Proc. Jangjeon Math. Soc., 21 (2018), 125–141.
    [11] T. Kim, D. S. Kim, G. W. Jang, A note on degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 20 (2017), 52–531.
    [12] T. Kim, D. S. Kim, G. W. Jang, J. Kwon, A note on some identities of derangement polynomials, J. Inequal. Appl., 2018 (2018), 40. doi: 10.1186/s13660-018-1636-8
    [13] T. Kim, D. S. Kim, H. I. Kwon, L. C. Jang, Fourier series of sums of products of r-derangement functions, J. Nonlinear Sci. Appl., 11 (2018), 575–590.
    [14] T. Kim, D. S. Kim, J. Kwon, H. Lee, A note on degenerate gamma random variables, Revista de edu., 388 (2020), 39–44.
    [15] D. S. Lee, H. K. Kim, On the new type of degenerate poly-Genocchi numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 431. doi: 10.1186/s13662-020-02886-5
    [16] Y. Ma, T. Kim, A note on negative \lambda-binomial distribution, Adv. Differ. Equ., 2020 (2020), 569. doi: 10.1186/s13662-020-03030-z
    [17] S. Roman, The umbral calculus, New York: Academic Press, Inc., 1984.
    [18] S. M. Ross, Introduction to probability models, 11 Eds., Amsterdam: Elsevier/Academic Press, 2014.
    [19] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 degenerate central Fubini polynomials with their certain properties, Adv. Differ. Equ., 2020 (2020), 587. doi: 10.1186/s13662-020-03055-4
    [20] Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 27 (2017), 199–212.
  • This article has been cited by:

    1. Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee, A new approach to Bell and poly-Bell numbers and polynomials, 2022, 7, 2473-6988, 4004, 10.3934/math.2022221
    2. Minyoung Ma, Dongkyu Lim, Degenerate Derangement Polynomials and Numbers, 2021, 5, 2504-3110, 59, 10.3390/fractalfract5030059
    3. Waseem A. Khan, Ghulam Muhiuddin, Abdulghani Muhyi, Deena Al-Kadi, Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03575-7
    4. Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim, Representations of modified type 2 degenerate poly-Bernoulli polynomials, 2022, 7, 2473-6988, 11443, 10.3934/math.2022638
    5. Sang Jo Yun, Jin-Woo Park, On degenerate multi-poly-derangement polynomials and numbers, 2024, 32, 2769-0911, 10.1080/27690911.2024.2401873
    6. Sang Jo Yun, Jin-Woo Park, Study of degenerate derangement polynomials by λ-umbral calculus, 2023, 56, 2391-4661, 10.1515/dema-2022-0240
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3184) PDF downloads(189) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog