Research article

The bounds of the energy and Laplacian energy of chain graphs

  • Received: 26 November 2020 Accepted: 24 February 2021 Published: 26 February 2021
  • MSC : 05C50, 05C09, 05C92

  • Let $ G $ be a simple connected graph of order $ n $ with $ m $ edges. The energy $ \varepsilon(G) $ of $ G $ is the sum of the absolute values of all eigenvalues of the adjacency matrix $ A $. The Laplacian energy is defined as $ LE(G) = \sum_{i = 1}^{n}|\mu_{i}-\frac{2m}{n}| $, where $ \mu_{1}, \mu_{2}, \dots, \mu_{n} $ are the Laplacian eigenvalues of a graph $ G $. In this article, we obtain some upper and lower bounds on the energy and Laplacian energy of chain graph. Finally, we attain the maximal Laplacian energy among all connected bicyclic chain graphs by comparing algebraic connectivity.

    Citation: Yinzhen Mei, Chengxiao Guo, Mengtian Liu. The bounds of the energy and Laplacian energy of chain graphs[J]. AIMS Mathematics, 2021, 6(5): 4847-4859. doi: 10.3934/math.2021284

    Related Papers:

  • Let $ G $ be a simple connected graph of order $ n $ with $ m $ edges. The energy $ \varepsilon(G) $ of $ G $ is the sum of the absolute values of all eigenvalues of the adjacency matrix $ A $. The Laplacian energy is defined as $ LE(G) = \sum_{i = 1}^{n}|\mu_{i}-\frac{2m}{n}| $, where $ \mu_{1}, \mu_{2}, \dots, \mu_{n} $ are the Laplacian eigenvalues of a graph $ G $. In this article, we obtain some upper and lower bounds on the energy and Laplacian energy of chain graph. Finally, we attain the maximal Laplacian energy among all connected bicyclic chain graphs by comparing algebraic connectivity.



    加载中


    [1] S. Akbari, E. Ghorbani, S. Zare, Some relations between rank, chromatic number and energy of graphs, Discrete Math., 309 (2009), 601–605. doi: 10.1016/j.disc.2008.09.012
    [2] A. Alazemi, M. Andelić, S. K. Simić, Eigenvalue location for chain graphs, Linear Algebra Appl., 505 (2016), 194–210. doi: 10.1016/j.laa.2016.04.030
    [3] M. Andelić, C. M. D. Fonseca, S. K. Simić, D. V. Tošić, On bounds for the index of double nested graphs, Linear Algebra Appl., 435 (2011), 2475–2490. doi: 10.1016/j.laa.2010.12.017
    [4] F. K. Bell, D. Cvetković, P. Rowlinson, S. K. Simić, Graphs for which the least eigenvalue is minimal, ii, Linear Algebra Appl., 429 (2008), 2168–2179. doi: 10.1016/j.laa.2008.06.018
    [5] A. Bhattacharya, S. Friedland, U. N. Peled, On the first eigenvalue of bipartite graphs, Mathematics, 15 (2008), 1000–1004.
    [6] J. A. Bondy, U. S. R. Murty, Graph theory with applications, The Macmillan Press Ltd, 1976.
    [7] K. Ch.Das, S. A. Mojallal, I. Gutman, On energy and laplacian energy of bipartite graphs, Appl. Math. Comput., 273 (2016), 759–766.
    [8] K. C. Das, A. Alazemi, M. Andelić, On energy and laplacian energy of chain graphs, Discrete Appl. Math., 284 (2020), 391–400. doi: 10.1016/j.dam.2020.03.057
    [9] K. C. Das, P. Kumar, Some new bounds on the spectral radius of graphs, Discrete Math., 281 (2004), 149–161. doi: 10.1016/j.disc.2003.08.005
    [10] K. C. Das, S. A. Mojallal, I. Gutman, On laplacian energy in terms of graph invariants, Appl. Math. Comput., 268 (2015), 83–92.
    [11] K. C. Das, S. A. Mojallal, I. Gutman, On energy of line graphs, Linear Algebra Appl., 499 (2016), 79–89. doi: 10.1016/j.laa.2016.03.003
    [12] I. Gutman, S. Wagner, The matching energy of a graph, Discrete Appl. Math., 160 (2012), 2177–2187. doi: 10.1016/j.dam.2012.06.001
    [13] H. Zhang, S. Li, On the laplacian spectral radius of bipartite graphs with fixed order and size, Discrete Appl. Math., 229 (2017), 139–147. doi: 10.1016/j.dam.2017.05.011
    [14] M. König, C. J. Tessone, Y. Zenou, Nestedness in networks: A theoretical model and some applications, Theoretical Economics, 9 (2014), 695–752. doi: 10.3982/TE1348
    [15] J. Li, J. M. Guo, W. C. Shiu, The orderings of bicyclic graphs and connected graphs by algebraic connectivity, The electronic journal of combinatorics, 17 (2010), 162. doi: 10.37236/434
    [16] X. Li, Z. Qin, M. Wei, I. Gutman, M. Dehmer, Novel inequalities for generalized graph entropies revisited, graph energies and topological indices, Appl. Math. Comput., 259 (2015), 470–479.
    [17] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer New York, 2012.
    [18] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197 (1994), 143–176.
    [19] J. L. Palacios, Lower bounds for the laplacian energy of bipartite graphs, Discrete Appl. Math., 239 (2018), 213–217. doi: 10.1016/j.dam.2017.12.030
    [20] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl., 289 (2004), 446–455. doi: 10.1016/j.jmaa.2003.08.027
    [21] S. Radenković, I. Gutman, Total $\pi$-electron energy and laplacian energy: How far the analogy goes?, J. Serb. Chem. Soc., 72 (2007), 1343–1350. doi: 10.2298/JSC0712343R
    [22] Y. Z. Song, P. Arbelaez, P. Hall, C. Li, A. Balikai, Finding semantic structures in image hierarchies using laplacian graph energy, European Conference on Computer Vision, (2010), 694–707.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2400) PDF downloads(222) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog