Research article

On graphs with a few distinct reciprocal distance Laplacian eigenvalues

  • Received: 17 July 2023 Revised: 17 September 2023 Accepted: 02 October 2023 Published: 25 October 2023
  • MSC : 05C50, 05C12, 15A18

  • For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance degrees $ RT(\Gamma) $ and the Harary matrix $ RD(\Gamma) $. In this article, we determine the graphs with exactly two distinct reciprocal distance Laplacian eigenvalues.We completely characterize the graph classes with a $ RD^L $ eigenvalue of multiplicity $ \nu-2 $. Moreover, we characterize families of graphs with reciprocal distance Laplacian eigenvalue whose multiplicity is $ \nu-3 $.

    Citation: Milica Anđelić, Saleem Khan, S. Pirzada. On graphs with a few distinct reciprocal distance Laplacian eigenvalues[J]. AIMS Mathematics, 2023, 8(12): 29008-29016. doi: 10.3934/math.20231485

    Related Papers:

  • For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance degrees $ RT(\Gamma) $ and the Harary matrix $ RD(\Gamma) $. In this article, we determine the graphs with exactly two distinct reciprocal distance Laplacian eigenvalues.We completely characterize the graph classes with a $ RD^L $ eigenvalue of multiplicity $ \nu-2 $. Moreover, we characterize families of graphs with reciprocal distance Laplacian eigenvalue whose multiplicity is $ \nu-3 $.



    加载中


    [1] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235–250. https://doi.org/10.1007/BF01164638 doi: 10.1007/BF01164638
    [2] K. C. Das, Maximum eigenvalue of the reciprocal distance matrix, J. Math. Chem., 47 (2010), 21–28. https://doi.org/10.1007/s10910-009-9529-1 doi: 10.1007/s10910-009-9529-1
    [3] F. Huang, X. Li, S. Wang, On graphs with maximum Harary spectral radius, Appl. Math. Comput., 266 (2014), 937–945. https://doi.org/10.1016/j.amc.2015.05.146 doi: 10.1016/j.amc.2015.05.146
    [4] B. Zhou, N. Trinajstić, Maximum eigenvalues of the reciprocal distance matrix and the reverse Wiener matrix, Int. J. Quantum Chem., 108 (2008), 858–864. https://doi.org/10.1002/qua.21558 doi: 10.1002/qua.21558
    [5] R. Bapat, S. K. Panda, The spectral radius of the Reciprocal distance Laplacian matrix of a graph, B. Iran. Math. Soc., 44 (2018), 1211–1216. https://doi.org/10.1007/s41980-018-0084-z doi: 10.1007/s41980-018-0084-z
    [6] S. Pirzada, S. Khan, On the distribution of eigenvalues of the reciprocal distance Laplacian matrix of graphs, Filomat, 37 (2023), 7973–7980.
    [7] L. Medina, M. Trigo, Upper bounds and lower bounds for the spectral radius of reciprocal distance, reciprocal distance Laplacian and reciprocal distance signless Laplacian matrices, Linear Algebra Appl., 609 (2021), 386–412. https://doi.org/10.1016/j.laa.2020.09.024 doi: 10.1016/j.laa.2020.09.024
    [8] L. Medina, M. Trigo, Bounds on the reciprocal distance energy and reciprocal distance Laplacian energies of a graph, Linear Multilinear A., 70 (2022), 3097–3118. https://doi.org/10.1080/03081087.2020.1825607 doi: 10.1080/03081087.2020.1825607
    [9] M. Trigo, On Hararay energy and reciprocal distance Laplacian energies, J. Phys. Conf. Ser., 2090 (2021), 012102. https://doi.org/10.1088/1742-6596/2090/1/012102 doi: 10.1088/1742-6596/2090/1/012102
    [10] S. Pirzada, An introduction to graph theory, Hyderabad: Universities Press, 2012.
    [11] D. Corneil, H. Lerchs, L. Burlingham, Complement reducible graphs, Discrete Appl. Math., 3 (1981), 163–174. https://doi.org/10.1016/0166-218X(81)90013-5
    [12] R. Fernandes, M. Aguieiras, A. Freitas, C. M. Silva, R. R. D. Vecchio, Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs, Linear Algebra Appl., 541 (2018), 81–93. https://doi.org/10.1016/j.laa.2017.11.031 doi: 10.1016/j.laa.2017.11.031
    [13] K. C. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs Combin., 23 (2007), 625–632. https://doi.org/10.1007/s00373-007-0758-4 doi: 10.1007/s00373-007-0758-4
    [14] R. Merris, Laplacian eigenvalues of graphs: A survey, Linear Algebra Appl., 197–198 (1994), 143–176. https://doi.org/10.1016/0024-3795(94)90486-3 doi: 10.1016/0024-3795(94)90486-3
    [15] A. Mohammadian, B. T. Rezaie, Graphs with four distinct Laplacian eigenvalues, J. Algebraic Combin., 34 (2011), 671–682. https://doi.org/10.1007/s10801-011-0287-3 doi: 10.1007/s10801-011-0287-3
    [16] P. Rowlinson, Z. Stanić, Signed graphs with three eigenvalues: Biregularity and beyond, Linear Algebra Appl., 621 (2021), 272–295. https://doi.org/10.1016/j.laa.2021.03.018 doi: 10.1016/j.laa.2021.03.018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1111) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog