Research article

Fat tails arise endogenously from supply/demand, with or without jump processes

  • Received: 11 February 2021 Accepted: 16 February 2021 Published: 26 February 2021
  • MSC : 91B70, 91B24, 60E05, 60J70, 60J76, 62E15, 62E20

  • We show that the quotient of Levy processes of jump-diffusion type has a fat-tailed distribution. An application is to price theory in economics, with the result that fat tails arise endogenously from modeling of price change based on an excess demand analysis resulting in a quotient of arbitrarily correlated demand and supply whether or not jump discontinuities are present. The assumption is that supply and demand are described by drift terms, Brownian (i.e., Gaussian) and compound Poisson jump processes. If $ P^{-1}dP/dt $ (the relative price change in an interval $ dt $) is given by a suitable function of relative excess demand, $ \left(\mathcal{D}-\mathcal{S}\right) /\mathcal{S} $ (where $ \mathcal{D} $ and $ \mathcal{S} $ are demand and supply), then the distribution has tail behavior $ F\left(x\right) \sim x^{-\zeta} $ for a power $ \zeta $ that depends on the function $ G $ in $ P^{-1}dP/dt = G\left(\mathcal{D}/\mathcal{S}\right) $. For $ G\left(x\right) \sim\left\vert x\right\vert ^{1/q} $ one has $ \zeta = q. $ The empirical data for assets typically yields a value, $ \zeta\tilde{ = }3, $ or $ \zeta\in\left[ 3, 5\right] $ for many financial markets.

    Many theoretical explanations have been offered for the disparity between the tail behavior of the standard asset price equation and empirical data. This issue never arises if one models price dynamics using basic economics methodology, i.e., generalized Walrasian adjustment, rather than the usual starting point for classical finance which assumes a normal distribution of price changes. The function $ G $ is deterministic, and can be calibrated with a smaller data set. The results establish a simple link between the decay exponent of the density function and the price adjustment function, a feature that can improve methodology for risk assessment.

    The mathematical results can be applied to other problems involving the relative difference or quotient of Levy processes of jump-diffusion type.

    Citation: Gunduz Caginalp. Fat tails arise endogenously from supply/demand, with or without jump processes[J]. AIMS Mathematics, 2021, 6(5): 4811-4846. doi: 10.3934/math.2021283

    Related Papers:

  • We show that the quotient of Levy processes of jump-diffusion type has a fat-tailed distribution. An application is to price theory in economics, with the result that fat tails arise endogenously from modeling of price change based on an excess demand analysis resulting in a quotient of arbitrarily correlated demand and supply whether or not jump discontinuities are present. The assumption is that supply and demand are described by drift terms, Brownian (i.e., Gaussian) and compound Poisson jump processes. If $ P^{-1}dP/dt $ (the relative price change in an interval $ dt $) is given by a suitable function of relative excess demand, $ \left(\mathcal{D}-\mathcal{S}\right) /\mathcal{S} $ (where $ \mathcal{D} $ and $ \mathcal{S} $ are demand and supply), then the distribution has tail behavior $ F\left(x\right) \sim x^{-\zeta} $ for a power $ \zeta $ that depends on the function $ G $ in $ P^{-1}dP/dt = G\left(\mathcal{D}/\mathcal{S}\right) $. For $ G\left(x\right) \sim\left\vert x\right\vert ^{1/q} $ one has $ \zeta = q. $ The empirical data for assets typically yields a value, $ \zeta\tilde{ = }3, $ or $ \zeta\in\left[ 3, 5\right] $ for many financial markets.

    Many theoretical explanations have been offered for the disparity between the tail behavior of the standard asset price equation and empirical data. This issue never arises if one models price dynamics using basic economics methodology, i.e., generalized Walrasian adjustment, rather than the usual starting point for classical finance which assumes a normal distribution of price changes. The function $ G $ is deterministic, and can be calibrated with a smaller data set. The results establish a simple link between the decay exponent of the density function and the price adjustment function, a feature that can improve methodology for risk assessment.

    The mathematical results can be applied to other problems involving the relative difference or quotient of Levy processes of jump-diffusion type.



    加载中


    [1] M. Aoki, H. Yoshikawa, Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes, Cambridge University Press, 2006.
    [2] L. Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup., 17 (1900), 21–86.
    [3] W. A. Brock, C. H. Hommes, Heterogeneous beliefs and routes to chaos in a simple asset pricing model, Journal of Economic Dynamics and Control, 22 (1998), 1235–1274. doi: 10.1016/S0165-1889(98)00011-6
    [4] J. P. Bouchaud, M. Potters, Theory of financial risks. From Statistical Physics to Risk Management, Cambridge University Press, 2000.
    [5] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Political Economy, 81 (1973), 637–654. doi: 10.1086/260062
    [6] G. Caginalp, D. Balevonich, Asset flow and momentum: Deterministic and stochastic equations, Phil. Trans. Royal Soc. A., 357 (1999), 2119–2113. doi: 10.1098/rsta.1999.0421
    [7] C. Caginalp, G. Caginalp, The quotient of normal random variables and application to asset price fat tails, Physica A, 499 (2018), 457–471. doi: 10.1016/j.physa.2018.02.077
    [8] C. Caginalp, G. Caginalp, Price equations with symmetric supply/demand; implications for fat tails, Economics Letters, 176 (2019), 79–82. doi: 10.1016/j.econlet.2018.12.037
    [9] G. Caginalp, G. B. Ermentrout, A kinetic thermodynamics approach to the psychology of fluctuations in financial markets, Appl. Math. Lett., 3 (1990), 17–19.
    [10] C. Carroll, The method of endogenous gridpoints for solving dynamic stochastic optimization problems, Economics Letters, 91 (2006), 312–320. doi: 10.1016/j.econlet.2005.09.013
    [11] N. Champagnat, M. Deaconu, A. Lejay, N. Navet, S. Boukherouaa, An empirical analysis of heavy-tails behavior of financial data: The case for power laws, HAL archives-ouvertes, 2013.
    [12] R. Cont, P. Tankov, Financial modeling with jump processes, Chapman & Hall/CRC, London, 2004.
    [13] J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma, C. G. de Vries, Fat tails, VaR and subadditivity, J. Econometrics, 172 (2013), 283–291. doi: 10.1016/j.jeconom.2012.08.011
    [14] E. Díaz-Francés, F. J. Rubio, On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables, Stat. Papers, 54 (2013), 309–323. doi: 10.1007/s00362-012-0429-2
    [15] M. DeSantis, D. Swigon, Slow-fast analysis of a multi-group asset flow model with implications for the dynamics of wealth, PloS one, 13 (2018), e0207764. doi: 10.1371/journal.pone.0207764
    [16] C. Eom, T. Kaizoji, S. H. Kang, L. Pichl, Bitcoin and investor sentiment: statistical characteristics and predictability, Physica A, 514 (2019), 511–521. doi: 10.1016/j.physa.2018.09.063
    [17] C. Eom, T. Kaizoji, E. Scalas, Fat tails in financial return distributions revisited: Evidence from the Korean stock market, Physica A, 526 (2019), 121055. doi: 10.1016/j.physa.2019.121055
    [18] A. Erdelyi, Asymptotic Expansions, Dover Publications, 1956.
    [19] L. C. Evans, Partial Differential Equations, 2nd Ed., Am. Math. Soc., 2010.
    [20] G. W. Evans, S. Honkapohja, Stochastic gradient learning in the cobweb model, Economics Letters, 61 (1998), 333–337. doi: 10.1016/S0165-1765(98)00176-1
    [21] E. Fama, The Behavior of Stock-Market Prices, J. Business, 38 (1965), 34–105. doi: 10.1086/294743
    [22] J. P. Fouque, G. Papanicolaou, R. Sircar, K. Sølna, Multiscale stochastic volatility for equity, interest rate, and credit derivatives, Cambridge University Press, 2011.
    [23] X. Gabaix, Power laws in economics: An introduction. Journal of Economic Perspectives, 30 (2016), 185–206.
    [24] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley, Institutional investors and stock market volatility, The Quarterly Journal of Economics, 121 (2006), 461–504. doi: 10.1162/qjec.2006.121.2.461
    [25] S. Gjerstad, J. Dickhaut, Price formation in double auctions, Games and economic behavior, 22 (1998), 1–29. doi: 10.1006/game.1997.0576
    [26] S. Gjerstad, The competitive market paradox, Journal of Economic Dynamics and Control, 31 (2007), 1753–1780. doi: 10.1016/j.jedc.2006.07.001
    [27] S. Gjerstad, Price dynamics in an exchange economy, Economic Theory, 52 (2013), 461–500. doi: 10.1007/s00199-011-0651-5
    [28] R. Geary, The frequency distribution of the quotient of two normal variates, J. Royal Stat. Soc., 93 (1930), 442–446. doi: 10.2307/2342070
    [29] P. Gopikrishnan, M. Meyer, L. Amaral, H. E. Stanley, Inverse cubic law for the distribution of stock price variations, Eur. Phys. J. B, 3 (1998), 139–140.
    [30] J. Henderson, R. Quandt, Microeconomic theory - A mathematical approach, McGraw-Hill, New York, 1980.
    [31] J. Hirshleifer, A. Glazer, D. Hirshleifer, Price theory and applications: decisions, markets, and information, Cambridge Univ. Press, 2005.
    [32] J. C. Hull, Options, Futures and Other Derivatives, 9th Ed., Pearson, 2015.
    [33] T. D. Jeitschko, Equilibrium price paths in sequential auctions with stochastic supply, Economics Letters, 64 (1999), 67–72. doi: 10.1016/S0165-1765(99)00066-X
    [34] D. W. Jansen, C. G. De Vries, On the frequency of large stock returns: Putting booms and busts into perspective, The review of economics and statistics, (1991), 18–24.
    [35] K. Kawamura, The structure of bivariate Poisson distribution, Kodai Math Sem. Rep., 25 (1973), 246–256. doi: 10.2996/kmj/1138846776
    [36] M. Kemp, Extreme events - robust portfolio construction in the presence of fat tails, Wiley Finance, Hoboken, NJ, 2011.
    [37] P. J. Klenow, B. A. Malin, Microeconomic evidence on price-setting, Handbook of monetary economics, 3 (2010), 231–284. doi: 10.1016/B978-0-444-53238-1.00006-5
    [38] M. Kirchler, J. Huber, Fat tails and volatility clustering in experimental asset markets, Journal of Economic Dynamics and Control, 31 (2007), 1844–1874. doi: 10.1016/j.jedc.2007.01.009
    [39] T. Lux, The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks, Applied financial economics, 6 (1996), 463–475. doi: 10.1080/096031096333917
    [40] B. LeBaron, R. Samanta, Extreme value theory and fat tails in equity markets, 2005. Available at SSRN 873656.
    [41] B. Mandelbrot, Sur certain prix speculatifs: faits empirique et modele base sur les processes stables additifs de Paul Levy, Comptes Rendus de l'Academie de Sciences, 254 (1962), 3968–3970.
    [42] A. M. Mood, F. A. Graybill, D. C. Boes, Introduction to the theory of statistics, 3rd Ed., McGraw-Hill, 1973.
    [43] B. Mandelbrot, R. Hudson, The misbehavior of markets: A fractal view of financial turbulence, Basic Books, New York, 2007.
    [44] G. Marsaglia, Ratios of normal variables, J. Stat. Softw., 16 (2006), 1–10.
    [45] H. Merdan, M. Alisen, A mathematical model for asset pricing, App. Math. Comp., 218 (2011), 1449–1456. doi: 10.1016/j.amc.2011.06.028
    [46] P. Milgrom, Discovering Prices: Auction Design in Markets with Complex Constraints, Columbia University Press, 2017.
    [47] R. N. Mantegna, H. E. Stanley, Introduction to econophysics: correlations and complexity in finance, Cambridge University press, 1999.
    [48] T. Pham-Gia, N. Turkkan, E. Marchand, Density of the ratio of two normal random variables and applications, Communications in Statistics-Theory and Methods, 35 (2006), 1569–1591. doi: 10.1080/03610920600683689
    [49] C. Plott, K. Pogorelskiy, Call market experiments: efficiency and price discovery through multiple calls and emergent Newton adjustments, American Economic Journal: Microeconomics, 9 (2017), 1–41.
    [50] D. Porter, S. Rassenti, A. Roopnarine, V. Smith, Combinatorial auction design, Proceedings of the National Academy of Sciences, 100 (2003), 11153–11157. doi: 10.1073/pnas.1633736100
    [51] S. T. Rachev, Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance, Book 1, Elsevier, 2003.
    [52] M. Raberto, S. Cincotti, S. M. Focardi, M. Marchesi, Agent-based simulation of a financial market, Physica A, 299 (2001), 319–327. doi: 10.1016/S0378-4371(01)00312-0
    [53] S. T. Rachev, C. Menn, F. J. Fabozzi, Fat-tailed and skewed asset return distributions: implications for risk management, portfolio selection, and option pricing, John Wiley & Sons, 2005.
    [54] Z. Rachev, B. Rocheva-Iotovo, S. Stoyanov, Capturing fat tails, Risk, 23 (2010), 72.
    [55] A. W. Rathgeber, J. Stadler, S. Stöckl, Financial modelling applying multivariate Lévy processes: New insights into estimation and simulation, Physica A, 532 (2019), 121386. doi: 10.1016/j.physa.2019.121386
    [56] Y. Si, S. Nadarajah, X. Song, On the distribution of quotient of random variables conditioned to the positive quadrant, Communications in Statistics-Theory and Methods, 49 (2020), 2514–2528. doi: 10.1080/03610926.2019.1576893
    [57] N. Taleb, G. Daniel, The problem is beyond psychology: The real world is more random than regression analyses, International Journal of Forecasting, Forthcoming, 2011.
    [58] Y. Tong, The multivariate normal distribution, Springer-Verlag, New York, 1990.
    [59] D. Watson, M. Getz, Price theory and its uses, 5th Ed., University Press of America, 1981.
    [60] E. R. Weintraub, Microfoundations, Cambridge University Press, 1979.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2414) PDF downloads(98) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog