We present four versions of Egoroff's theorems for measurable closed-valued multifunctions on non-additive measure spaces. The conditions provided for each of these four versions are not only sufficient, but also necessary. In our discussions the continuity of non-additive measures is not required. The previous related results are improved and generalized.
Citation: Tao Chen, Hui Zhang, Jun Li. Egoroff's theorems for random sets on non-additive measure spaces[J]. AIMS Mathematics, 2021, 6(5): 4803-4810. doi: 10.3934/math.2021282
We present four versions of Egoroff's theorems for measurable closed-valued multifunctions on non-additive measure spaces. The conditions provided for each of these four versions are not only sufficient, but also necessary. In our discussions the continuity of non-additive measures is not required. The previous related results are improved and generalized.
[1] | J. P. Aubin, H. Frankowska, Set-Valued Analysis, Boston: Birkhäuser, 1990. |
[2] | D. Candeloro, R. Mesiar, A. R. Sambucini, A special class of fuzzy measures: Choquet integral and applications, Fuzzy Set. Syst., 355 (2019), 83–99. doi: 10.1016/j.fss.2018.04.008 |
[3] | P. R. Halmos, Measure Theory, New York: Van Nostrand, 1968. |
[4] | J. Kawabe, The Egoroff theorem for non-additive measures in Riesz spaces, Fuzzy Set. Syst., 157 (2006), 2762–2770. doi: 10.1016/j.fss.2006.06.014 |
[5] | J. Kawabe, The Egoroff property and the Egoroff theorem in Riesz space-valued non-additive measure theory, Fuzzy Set. Syst., 158 (2007), 50–57. doi: 10.1016/j.fss.2006.09.019 |
[6] | J. Li, A further investigation for Egoroff's theorem with respect to monotone set functions, Kybernetika, 39 (2003), 753–760. |
[7] | J. Li, M. Yasuda, Egoroff's theorems on monotone non-additive measure space, Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 12 (2004), 61–68. doi: 10.1142/S0218488504002655 |
[8] | G. Li, J. Li, M. Yasuda, J. Song, Almost everywhere convergence of random set sequence on non-additive measure spaces, Proceedings of 11th International Fuzzy Systems Association World Conference, I (2005), 173–175. |
[9] | J. Li, R. Mesiar, E. Pap, E. P. Klement, Convergence theorems for monotone measures, Fuzzy Set. Syst., 281 (2015), 103–127. doi: 10.1016/j.fss.2015.05.017 |
[10] | J. Li, Y. Ouyang, R. Mesiar, Generalized convergence theorems for monotone measures, Fuzzy Set. Syst., (2020). |
[11] | Y. Liu, On the Convergence of measurable set-valued function sequence on fuzzy measure space, Fuzzy Set. Syst., 112 (2000), 241–249. doi: 10.1016/S0165-0114(97)00349-7 |
[12] | T. Murofushi, K. Uchino, S. Asahina, Conditions for Egoroff's theorem in non-additive measure theory, Fuzzy Set. Syst., 146 (2000), 135–146. |
[13] | E. Pap, Null-Additive Set Functions, Dordrecht: Kluwer, 1995. |
[14] | A. Precupanu, A. Gavrilut, A set-valued Egoroff type theorem, Fuzzy Set. Syst., 175 (2011), 87–95. doi: 10.1016/j.fss.2011.02.018 |
[15] | F. Reche, M. Morales, A. Salmer$\acute{o}$n, Construction of fuzzy measures over product spaces, Mathematics, 8 (2020), 1605. doi: 10.3390/math8091605 |
[16] | G. Salinetti, R. J-B. Wets, On the convergence of closed-valued measurable multifunctions, T. Am. Math. Soc., 266 (1981), 275–289. |
[17] | A. R. Sambucini, D. Candeloro, A. Croitoru, A. Gavrilut, A. Iosif, Properties of the Riemann-Lebesgue integrability in the non-additive case, Rend. Circ. Mat. Palermo, II. Ser, 69 (2019), 577–589. |
[18] | Q. Sun, Property ($S$) of fuzzy measure and Riesz's theorem, Fuzzy Set. Syst., 62 (1994), 117–119. doi: 10.1016/0165-0114(94)90080-9 |
[19] | Z. Wang, G. J. Klir, Generalized Measure Theory, New York: Springer, 2009. |