Research article

Egoroff's theorems for random sets on non-additive measure spaces

  • Received: 05 January 2021 Accepted: 23 February 2021 Published: 25 February 2021
  • MSC : 26E25, 28E10, 54C60

  • We present four versions of Egoroff's theorems for measurable closed-valued multifunctions on non-additive measure spaces. The conditions provided for each of these four versions are not only sufficient, but also necessary. In our discussions the continuity of non-additive measures is not required. The previous related results are improved and generalized.

    Citation: Tao Chen, Hui Zhang, Jun Li. Egoroff's theorems for random sets on non-additive measure spaces[J]. AIMS Mathematics, 2021, 6(5): 4803-4810. doi: 10.3934/math.2021282

    Related Papers:

  • We present four versions of Egoroff's theorems for measurable closed-valued multifunctions on non-additive measure spaces. The conditions provided for each of these four versions are not only sufficient, but also necessary. In our discussions the continuity of non-additive measures is not required. The previous related results are improved and generalized.



    加载中


    [1] J. P. Aubin, H. Frankowska, Set-Valued Analysis, Boston: Birkhäuser, 1990.
    [2] D. Candeloro, R. Mesiar, A. R. Sambucini, A special class of fuzzy measures: Choquet integral and applications, Fuzzy Set. Syst., 355 (2019), 83–99. doi: 10.1016/j.fss.2018.04.008
    [3] P. R. Halmos, Measure Theory, New York: Van Nostrand, 1968.
    [4] J. Kawabe, The Egoroff theorem for non-additive measures in Riesz spaces, Fuzzy Set. Syst., 157 (2006), 2762–2770. doi: 10.1016/j.fss.2006.06.014
    [5] J. Kawabe, The Egoroff property and the Egoroff theorem in Riesz space-valued non-additive measure theory, Fuzzy Set. Syst., 158 (2007), 50–57. doi: 10.1016/j.fss.2006.09.019
    [6] J. Li, A further investigation for Egoroff's theorem with respect to monotone set functions, Kybernetika, 39 (2003), 753–760.
    [7] J. Li, M. Yasuda, Egoroff's theorems on monotone non-additive measure space, Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 12 (2004), 61–68. doi: 10.1142/S0218488504002655
    [8] G. Li, J. Li, M. Yasuda, J. Song, Almost everywhere convergence of random set sequence on non-additive measure spaces, Proceedings of 11th International Fuzzy Systems Association World Conference, I (2005), 173–175.
    [9] J. Li, R. Mesiar, E. Pap, E. P. Klement, Convergence theorems for monotone measures, Fuzzy Set. Syst., 281 (2015), 103–127. doi: 10.1016/j.fss.2015.05.017
    [10] J. Li, Y. Ouyang, R. Mesiar, Generalized convergence theorems for monotone measures, Fuzzy Set. Syst., (2020).
    [11] Y. Liu, On the Convergence of measurable set-valued function sequence on fuzzy measure space, Fuzzy Set. Syst., 112 (2000), 241–249. doi: 10.1016/S0165-0114(97)00349-7
    [12] T. Murofushi, K. Uchino, S. Asahina, Conditions for Egoroff's theorem in non-additive measure theory, Fuzzy Set. Syst., 146 (2000), 135–146.
    [13] E. Pap, Null-Additive Set Functions, Dordrecht: Kluwer, 1995.
    [14] A. Precupanu, A. Gavrilut, A set-valued Egoroff type theorem, Fuzzy Set. Syst., 175 (2011), 87–95. doi: 10.1016/j.fss.2011.02.018
    [15] F. Reche, M. Morales, A. Salmer$\acute{o}$n, Construction of fuzzy measures over product spaces, Mathematics, 8 (2020), 1605. doi: 10.3390/math8091605
    [16] G. Salinetti, R. J-B. Wets, On the convergence of closed-valued measurable multifunctions, T. Am. Math. Soc., 266 (1981), 275–289.
    [17] A. R. Sambucini, D. Candeloro, A. Croitoru, A. Gavrilut, A. Iosif, Properties of the Riemann-Lebesgue integrability in the non-additive case, Rend. Circ. Mat. Palermo, II. Ser, 69 (2019), 577–589.
    [18] Q. Sun, Property ($S$) of fuzzy measure and Riesz's theorem, Fuzzy Set. Syst., 62 (1994), 117–119. doi: 10.1016/0165-0114(94)90080-9
    [19] Z. Wang, G. J. Klir, Generalized Measure Theory, New York: Springer, 2009.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1934) PDF downloads(105) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog