In the present paper, with the combination of a compactness lemma and variational techniques, we establish a sufficient condition to guarantee the existence of two nontrivial homoclinic solutions for a nonperiodic fourth-order difference equation with a perturbation. Our result generalizes and improves some known results.
Citation: Yuhua Long. Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation[J]. AIMS Mathematics, 2021, 6(5): 4786-4802. doi: 10.3934/math.2021281
In the present paper, with the combination of a compactness lemma and variational techniques, we establish a sufficient condition to guarantee the existence of two nontrivial homoclinic solutions for a nonperiodic fourth-order difference equation with a perturbation. Our result generalizes and improves some known results.
[1] | R. P. Agarwal, Difference equations and inequalities: Theory, methods and applications, Marcel Dekker, 1992. |
[2] | Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commu. Nonlinear Sci., 83 (2020), 105117. doi: 10.1016/j.cnsns.2019.105117 |
[3] | Y. T. Shi, J. S. Yu, Wolbachia infection enhancing and decaying domains in mosquito population based on discrete models, J. Biol. Dynam., 14 (2020), 679–695. doi: 10.1080/17513758.2020.1805035 |
[4] | F. M. Atici, G. S. Guseinov, Positive periodic solutions for nonlinear difference equations with periodic coefficients, J. Math. Anal. Appl., 232 (1999), 166–182. doi: 10.1006/jmaa.1998.6257 |
[5] | Z. M. Guo, J. S. Yu, The existence of periodic and subharmonic solutions of sub-quadratic second order difference equations, J. Lond. Math. Soc., 68 (2003), 419–430. doi: 10.1112/S0024610703004563 |
[6] | J. Hendersona, R. Luca, Existence of positive solutions for a system of semipositone coupled discrete boundary value problems, J. Differ. Equ. Appl., 25 (2019), 516–541. doi: 10.1080/10236198.2019.1585831 |
[7] | T. S. He, Y. W. Zhou, Y. T. Xu, C. Y. Chen, Sign-changing solutions for discrete second-order periodic boundary value problems, B. Malays. Math. Sci. So., 38 (2015), 181–195. doi: 10.1007/s40840-014-0012-1 |
[8] | Y. H. Long, B. L. Zeng, Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence, Open Math., 15 (2017), 1549–1557. doi: 10.1515/math-2017-0129 |
[9] | Y. H. Long, J. L. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 83 (2018), 7–14. doi: 10.1016/j.aml.2018.03.006 |
[10] | Y. H. Long, S. H. Wang, Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow, J. Differ. Equ. Appl., 25 (2019), 1768–1789. doi: 10.1080/10236198.2019.1694014 |
[11] | Y. H. Long, Existence of multiple and sign-changing solutions for a second-order nonlinear functional difference equation with periodic coefficients, J. Differ. Equ. Appl., 26 (2020), 966–986. doi: 10.1080/10236198.2020.1804557 |
[12] | M. J. Ma, Z. M. Guo, Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 232 (2006), 513–521. |
[13] | Y. H. Long, Homoclinic orbits for a class of noncoercive discrete hamiltonian systems, J. Appl. Math., 2012 (2012), 1–21. |
[14] | Z. Zhou, D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781–790. doi: 10.1007/s11425-014-4883-2 |
[15] | Y. H. Long, Y. B. Zhang, H. P. Shi, Homoclinic solutions of $2n$th-order difference equations containing both advance and retardation, Open Math., 14 (2016), 520–530. doi: 10.1515/math-2016-0046 |
[16] | L. Erbe, B. G. Jia, Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Compt., 9 (2019), 271–294. |
[17] | Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Commun. Pur. Appl. Anal., 18 (2019), 425–434. doi: 10.3934/cpaa.2019021 |
[18] | J. H. Kuang, Z. M. Guo, Heteroclinic solutions for a class of $p$-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. doi: 10.1016/j.aml.2019.106034 |
[19] | Y. H. Long, S. H. Wang, J. L. Chen, Multiple solutions of fourth-order difference equations with different boundary conditions, Bound. Value Probl., 2019 (2019), 1–25. doi: 10.1186/s13661-018-1115-7 |
[20] | S. H. Wang, Y. H. Long, Multiple solutions of fourth-order functional difference equation with periodic boundary conditions, Appl. Math. Lett., 104 (2020), 106292. doi: 10.1016/j.aml.2020.106292 |
[21] | G. H. Lin, Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Commun. Pur. Appl. Anal., 17 (2018), 1723–1747. doi: 10.3934/cpaa.2018082 |
[22] | H. Fang, D. P. Zhao, Existence of nontrivial homoclinic orbits for fourth-order difference equations, Appl. Math. Compt., 214 (2009), 163–170. doi: 10.1016/j.amc.2009.03.061 |
[23] | N. Dimitrov, S. Tersian, Existence of homoclinic solutions for a nonlinear fourth order p-Laplacian difference equation, Discrete Cont. Dyn. B, 25 (2020), 555–567. |
[24] | I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer-Verlag Berlin Heidelberg, 1990. |
[25] | S. Tersian, J. Chaparova, Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations, J. Math. Anal. Appl., 260 (2001), 490–506. doi: 10.1006/jmaa.2001.7470 |
[26] | Y. C. Zhou, H. Cao, Y. N. Cao, Difference equations and their applications, Beijing, Science Press, 2014. |