Research article

Codewords generated by UP-valued functions

  • Received: 17 November 2020 Accepted: 22 February 2021 Published: 25 February 2021
  • MSC : 06F35, 03G25, 94B05

  • The concept of a UP-valued function on a nonempty set was introduced by Ansari et al. [3]. Codewords in a binary block-code generated by a UP-valued function are established and some interesting results are obtained. Finally, we prove that every finite UP-algebra $ A $ which has the order less than or equal to the order of a finite set $ X $ determines a binary block-code $ V $ such that $ (A, \leq) $ is isomorphic to $ (V, \preceq) $.

    Citation: Ronnason Chinram, Aiyared Iampan. Codewords generated by UP-valued functions[J]. AIMS Mathematics, 2021, 6(5): 4771-4785. doi: 10.3934/math.2021280

    Related Papers:

  • The concept of a UP-valued function on a nonempty set was introduced by Ansari et al. [3]. Codewords in a binary block-code generated by a UP-valued function are established and some interesting results are obtained. Finally, we prove that every finite UP-algebra $ A $ which has the order less than or equal to the order of a finite set $ X $ determines a binary block-code $ V $ such that $ (A, \leq) $ is isomorphic to $ (V, \preceq) $.



    加载中


    [1] M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 61.
    [2] M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388–402.
    [3] M. A. Ansari, A. N. A. Koam, A. Haider, On binary block codes associated to UP-algebras, Ital. J. Pure Appl. Math., (2020), Accepted.
    [4] N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 16 (2018), 171–190. doi: 10.30948/afmi.2018.16.2.171
    [5] C. Flaut, BCK-algebras arising from block codes, J. Intell. Fuzzy Syst., 28 (2015), 1829–1833. doi: 10.3233/IFS-141469
    [6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5 (2017), 35–54.
    [7] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl., 38 (2018), 297–306. doi: 10.7151/dmgaa.1290
    [8] A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), 459–471. doi: 10.29020/nybg.ejpam.v13i3.3752
    [9] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Acad., 42 (1966), 19–22. doi: 10.3792/pja/1195522169
    [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26–29. doi: 10.3792/pja/1195522171
    [11] Y. B. Jun, S. Z. Song, Codes based on BCK-algebras, Inf. Sci., 181 (2011), 5102–5109. doi: 10.1016/j.ins.2011.07.006
    [12] H. S. Kim, Y. H. Kim, On BE-algebras, Math. Japon., 66 (2007), 113–116.
    [13] A. N. A. Koam, M. A. Ansari, A. Haider, $n$-ary block codes related to KU-algebras, J. Taibah Univ. Sci., 14 (2020), 172–176. doi: 10.1080/16583655.2020.1713585
    [14] A. N. A. Koam, A. Haider, M. A. Ansari, On an extension of KU-algebras, AIMS Math., 6 (2021), 1249–1257. doi: 10.3934/math.2021077
    [15] S. M. Mostafa, B. Youssef, H. A. Jad, Coding theory applied to KU-algebras, J. New Theory, 6 (2015), 43–53.
    [16] G. Muhiuddin, Bipolar fuzzy KU-subalgebras/ideals of KU-algebras, Ann. Fuzzy Math. Inform, 8 (2014), 409–418.
    [17] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54–57.
    [18] A. Satirad, R. Chinram, A. Iampan, Four new concepts of extension of KU/UP-algebras, Missouri J. Math. Sci., 32 (2020), 138–157. doi: 10.35834/2020/3202138
    [19] A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403–409.
    [20] A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17–25.
    [21] T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 1850049. doi: 10.1142/S1793830918500490
    [22] T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497–517.
    [23] T. Senapati, K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra, J. Intell. Fuzzy Syst., 30 (2016), 1169–1180. doi: 10.3233/IFS-151841
    [24] S. Thongarsa, P. Burandate, A. Iampan, Some operations of fuzzy sets in UP-algebras with respect to a triangular norm, Ann. Commun. Math., 2 (2019), 1–10.
    [25] N. Yaqoob, S. M. Mostafa, M. A. Ansari, On cubic KU-ideals of KU-algebras, Int. Sch. Res. Not., 2013 (2013), 1–10. doi: 10.1093/imrn/rnr226
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2205) PDF downloads(146) Cited by(2)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog