Research article

Numerous graph energies of regular subdivision graph and complete graph

  • Received: 27 April 2021 Accepted: 19 May 2021 Published: 02 June 2021
  • MSC : 14H50, 14H20, 32S15

  • The graph energy $ E(G) $ of a simple graph $ G $ is sum of its absolute eigenvalues where eigenvalues of adjacency matrix $ A(G) $ are referred as eigenvalues of graph $ G $. Depends upon eigenvalues of different graph matrices, several graph energies has been observed recently such as maximum degree energy, Randi$ \acute{c} $ energy, sum-connectivity energy etc. Depending on the definition of a graph matrix, the graph energy can be easily determined. This article contains upper bounds of several graph energies of $ s $-regular subdivision graph $ S(G) $. Also various graph energies of complete graph are mentioned in this article.

    Citation: Imrana Kousar, Saima Nazeer, Abid Mahboob, Sana Shahid, Yu-Pei Lv. Numerous graph energies of regular subdivision graph and complete graph[J]. AIMS Mathematics, 2021, 6(8): 8466-8476. doi: 10.3934/math.2021491

    Related Papers:

  • The graph energy $ E(G) $ of a simple graph $ G $ is sum of its absolute eigenvalues where eigenvalues of adjacency matrix $ A(G) $ are referred as eigenvalues of graph $ G $. Depends upon eigenvalues of different graph matrices, several graph energies has been observed recently such as maximum degree energy, Randi$ \acute{c} $ energy, sum-connectivity energy etc. Depending on the definition of a graph matrix, the graph energy can be easily determined. This article contains upper bounds of several graph energies of $ s $-regular subdivision graph $ S(G) $. Also various graph energies of complete graph are mentioned in this article.



    加载中


    [1] M. A. Sriraj, Some studies on energy of graphs, Ph. D. Thesis, Univ. Mysore, Mysore, India, 2014.
    [2] M. S. Ahmad, W. Nazeer, S. M. Kang, M. Imran, W. Gao, Calculating degree-based topological indices of dominating David derived networks, Open Phys., 15 (2017), 1015–1021. doi: 10.1515/phys-2017-0126
    [3] A. Farooq, M. Habib, A. Mahboob, W. Nazeer, S. M. Kang, Zagreb polynomials and redefined zagreb indices of dendrimers and polyomino chains, Open Chem., 17 (2019), 1374–1381. doi: 10.1515/chem-2019-0144
    [4] Y. C. Kwun, A. Farooq, W. Nazeer, Z. Zahid, S. Noreen, S. M. Kang, Computations of the M-polynomials and degree-based topological indices for dendrimers and polyomino chains, Int. J. Anal. Chem., 2018 (2018), 1709073.
    [5] C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci., 4 (2009), 385–396.
    [6] C. Adiga, C. S. Swamy, Bounds on the largest of minimum degree eigenvalues of graphs, Int. Math. Forum, 5 (2010), 1823–1831.
    [7] K. C. Das, S. Sorguna, K. Xu, On randic energy of graphs, Math. Commun. Math. Comput. Chem., 72 (2014), 227–238.
    [8] B. Zhou, N. Trinajstic, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov., 57 (2010), 518–523.
    [9] N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb estrada index of graphs, Math. Commun. Math. Comput. Chem., 79 (2018), 371–386.
    [10] P. Nageswari, P. B. Sarasija, Seidel energy and its bounds, Int. J. Math. Anal., 8 (2014), 2869–2871.
    [11] S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph, Eur. J. Pure Appl. Math., 9 (2016), 340–345.
    [12] B. Basavanagoud, E. Chitra, Degree square sum energy of graphs, Int. J. Math. Appl., 6 (2018), 193–205.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3071) PDF downloads(170) Cited by(1)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog