Two graphs are said to be cospectral with respect to the Laplacian matrix if they have the same Laplacian spectrum. A graph is said to be determined by the Laplacian spectrum if there is no other non-isomorphic graph with the same Laplacian spectrum. In this paper, we prove that one special class of triple starlike tree is determined by its Laplacian spectrum.
Citation: Muhammad Ajmal, Xiwang Cao, Muhammad Salman, Jia-Bao Liu, Masood Ur Rehman. A special class of triple starlike trees characterized by Laplacian spectrum[J]. AIMS Mathematics, 2021, 6(5): 4394-4403. doi: 10.3934/math.2021260
Two graphs are said to be cospectral with respect to the Laplacian matrix if they have the same Laplacian spectrum. A graph is said to be determined by the Laplacian spectrum if there is no other non-isomorphic graph with the same Laplacian spectrum. In this paper, we prove that one special class of triple starlike tree is determined by its Laplacian spectrum.
[1] | R. Boulet, B. Jouve, The lollipop is determined by its spectrum, Electron. J. Comb., 15 (2008), R74. doi: 10.37236/798 |
[2] | R. Boulet, Spectral characterizations of sun graphs and broken sun graphs, Discrete Math. Theor. Comput. Sci., 11 (2009), 149–160. |
[3] | C. J. Bu, J. Zhou, Starlike trees whose maximum degree exceed 4 are determined by their Q-spectra, Linear Algebra Appl., 436 (2012), 143–151. doi: 10.1016/j.laa.2011.06.028 |
[4] | C. J. Bu, J. Zhou, Signless Laplacian spectral characterization of the cones over some regular graphs, Linear Algebra Appl., 436 (2012), 3634–3641. doi: 10.1016/j.laa.2011.12.035 |
[5] | N. Ghareghani, G. R. Omidi, B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl., 420 (2007), 483–489. doi: 10.1016/j.laa.2006.08.009 |
[6] | Hs. H. Günthard, H. Primas, Zusammenhang von Graphentheorie und Mo-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta., 39 (1956), 1645–1653. doi: 10.1002/hlca.19560390623 |
[7] | I. Gutman, V. Gineityte, M. Lepović, M. Petrović, The high-energy band in the photoelectron spectrum of alkaners and its dependence on molecular structure, J. Serb. Chem. Soc., 64 (1999), 673–680. doi: 10.2298/JSC9911673G |
[8] | A. K. Kelmans, V. M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Comb. Theory B, 16 (1974), 197–214. doi: 10.1016/0095-8956(74)90065-3 |
[9] | D. J. Klein, Graph geometry, graph metrics, & wiener, MATCH Communi. Math. Compt. Chem., 35 (1997), 7–27. |
[10] | J. X. Li, X. D. Zhang, On the Laplacian eigenvalues of a graph, Linear Algebra Appl., 285 (1998), 305–307. doi: 10.1016/S0024-3795(98)10149-0 |
[11] | X. G. Liu, Y. P. Zhang, P. L. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett., 22 (2009), 435–438. doi: 10.1016/j.aml.2008.06.012 |
[12] | F. J. Liu, Q. X. Huang, Laplacian spectral characterization of 3-rosegraphs, Linear Algebra Appl., 439 (2013), 2914–2920. doi: 10.1016/j.laa.2013.07.029 |
[13] | M. L. Liu, Y. L. Zhu, H. Y. Shan, K. C. Das, The spectral characterization of butterfly-like graphs, Linear Algebra Appl., 513 (2017), 55–68. doi: 10.1016/j.laa.2016.10.003 |
[14] | P. L. Lu, X. D. Zhang, Y. P. Zhang, Determination of double quasi-star tree from its Laplacian spectrum, Journal Shanghai University, 14 (2010), 163–166. doi: 10.1007/s11741-010-0622-1 |
[15] | P. L. Lu, X. G. Liu, Laplacian spectral characterization of some double starlike trees, Journal of Harbin Engineering University, 37 (2016), 242–247. |
[16] | X. L. Ma, Q. X. Huang, Signless Laplacian spectral characterization of 4-rose graphs, Linear Multi-linear Algebra, 64 (2016), 2474–2485. doi: 10.1080/03081087.2016.1161705 |
[17] | M. Mirzakhah, D. Kiani, The sun graph is determined by its signless Laplacian spectrum, Electron. J. Linear Algebra, 20 (2010), 610–620. |
[18] | G. R. Omidi, K. Tajbakhsh, Startlike trees are determined by their Laplacian spectrum, Linear Algebra Appl., 422 (2007), 654–658. doi: 10.1016/j.laa.2006.11.028 |
[19] | C. S. Oliveira, N. M. M. de Abreu, S. Jurkiewicz, The characteristic polynomial of the Laplacian of graphs in $(a, b)$-linear cases, Linear Algebra Appl., 356 (2002), 113–121. doi: 10.1016/S0024-3795(02)00357-9 |
[20] | G. R. Omidi, E. Vatandoost, Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra, Electron. J. Linear Algebra, 20 (2010), 274–290. |
[21] | X. L. Shen, Y. P. Hou, Y. P. Zhang, Graph $ Z_n $ and some graphs related to $ Z_n $ are determined by their spectrum, Linear Algebra Appl., 404 (2005), 58–68. doi: 10.1016/j.laa.2005.01.036 |
[22] | X. L. Shen, Y. P. Hou, Some trees are determined by their Laplacian spectra, Journal of Nature Science Hunan Normal University, 1 (2006), 241–272. |
[23] | S. Sorgun, H. Topcu, On the spectral characterization of kite graphs, J. Algebra Comb. Discrete Struct. Appl., 3 (2016), 81–90. |
[24] | E. R. van Dam, W. H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl., 373 (2003), 241–272. |
[25] | E. R. van Dam, W. H. Haemers, Developments on spectral characterizations of graphs, Discrete Math., 309 (2009), 576–586. doi: 10.1016/j.disc.2008.08.019 |
[26] | W. Wang, C. X. Xu, Note: The T-shape tree is determined by its Laplacian spectrum, Linear Algebra Appl., 419 (2006), 78–81. doi: 10.1016/j.laa.2006.04.005 |
[27] | F. Wen, Q. X. Huang, X. Y. Huang, F. J. Liu, On the Laplacian spectral characterization of $\prod$-shape trees, Indian J. Pure Applied Math., 49 (2018), 397–411. doi: 10.1007/s13226-018-0276-5 |
[28] | Y. P. Zhang, X. G. Liu, B. Y. Zhang, X. R. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math., 309 (2009), 3364–3369. doi: 10.1016/j.disc.2008.09.052 |
[29] | J. Zhou, C. J. Bu, Laplacian spectral characterization of some graphs obtained by product operation, Discrete Math., 312 (2012), 1591–1595. doi: 10.1016/j.disc.2012.02.002 |