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Abstract: Two graphs are said to be cospectral with respect to the Laplacian matrix if they have the
same Laplacian spectrum. A graph is said to be determined by the Laplacian spectrum if there is no
other non-isomorphic graph with the same Laplacian spectrum. In this paper, we prove that one special
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1. Introduction

All graphs mentioned in this paper are finite, undirected and simple. Let Γ = (V(Γ), E(Γ)) be a
graph of order n with vertex set V(Γ) = {v1, v2, . . . , vn} and edge set E(Γ) ⊆

(
V(Γ)

2

)
. The adjacency

matrix of a graph Γ, denoted by A(Γ) = (ai, j) is a square matrix of order n such that ai, j = 1 if
two vertices vi and v j are adjacent and 0 otherwise. Let di = dvi be the degree of a vertex vi in
Γ. The Laplacian matrix and the signless Laplacian matrix are defined as L(Γ) = D(Γ) − A(Γ) and
Q(Γ) = D(Γ)+A(Γ) respectively, where D(Γ) is the diagonal matrix with diagonal entries {d1, d2, . . . , dn}

and all others entries are zeros [9]. We know that the matrices A(Γ), L(Γ) and Q(Γ) are real symmetric,
their eigenvalues are real. So, we assume that µ1 ≥ µ2 ≥ · · · ≥ µn, λ1 ≥ λ2 ≥ · · · ≥ λn, and
σ1 ≥ σ2 ≥ · · · ≥ σn are the adjacency, Laplacian, and signless Laplacian eigenvalues of Γ, respectively.
The multiset of eigenvalues of A(Γ) (or L(Γ), Q(Γ)) is called the adjacency (or Laplacian, signless
Laplacian) spectrum of the graph Γ. If two non-isomorphic graphs share the same adjacency (or
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Laplacian, signless Laplacian) spectrum then we call graphs are cospectral. A graph Γ is said to be
determined by the adjacency spectrum (abbreviated to DAS ) if there is no non-isomorphic graph which
have same adjacency spectrum. Similarly, we can define DLS graph for the Laplacian matrix L(Γ) and
DQS graph for the singless Laplacian matrix Q(Γ).

In 1956, Günthard and Primas [6] raised a question “which graphs are determined by their
spectrum” in context of Hückels theory. Basically this problem originates from Chemistry and
generally seem to be very difficult. On this problem, Dam and Haemers [24] presented a survey and
proposed the modest shape of this problem that is “which trees are determined by their spectrum”.
Many researcher have been established results on the graphs DAS, DLS and DQS and some of these
results can be found in [1, 2,21, 23–25], in [1,5, 11–14,21,22, 26,27, 29] and in [3,4,13, 16,17, 20,28]
respectively.

A tree Tn′ of order n′ is a connected graph without cycle. A vertex v ∈ V(Tn′) is called large if
dv ≥ 3. A tree having one, two or three large vertices is called starlike, double starlike or triple starlike
tree, respectively.

We denote by Tn′(p, q), n′ ≥ 2 and p, q ≥ 1, one special double starlike tree (of order n′) obtained
by joining p pendent vertices to an end vertex of a path of length n and joining q pendent vertices
to another one. In 2009 Liu et al. [11] studied the Laplacian spectrum of Tn′(p, q), for q = p they
showed that Tn′(p, q) can be determined by its Laplacian spectrum. In 2010 Lu et al. [14] showed that
for q = p − 1, Tn′(p, q) can be determined by its Laplacian spectrum. In [15], the authors proved that
Tn′(p, q) can be completely determined by its Laplacian spectrum.

Let Pn be a path of length n, where n ≥ 5, attach p pendent vertices to an end vertex of Pn, p pendent
vertices to another end vertex and p pendent vertices to any vertex v ∈ V(Pn) which is at distance at
least two from the end vertices of Pn where p ≥ 2, by this way we obtain a special triple starlike
tree as shown in Figure 1 (or Figures 2 and 3). We denote the aforementioned tree by Tn′(p, p, p).
Note that the order n′ of Tn′(p, p, p) is n + 3p, where l1 + l2 = n − 3 see Figure 1. In this paper we
show that Tn′(p, p, p) can be determined by its Laplacian spectrum or more precisely, any graph that is
determined by its degree sequence is determined by its Laplacian spectrum.

1 2 n − 1 n

. . . . . .
p

...

...

p
...
...

p
l1 l2

Figure 1. Triple starlike tree Tn′(p, p, p).

l1

. . . . . .
p

...

...

p
...
...

p
l2

l1 = 1, l2 = 2

Figure 2. Tn′(p, p, p) with n′ = 6 + 3p.
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l1 = 3, l2 = 4

Figure 3. Tn′(p, p, p) with n′ = 10 + 3p.

2. Preliminaries

In this section, we present some known results that play an important role in the results of next
section.

Lemma 1. [19, 24] Let Γ be a graph. Then the following items are determined by spectrum of
adjacency or Laplacian matrix.

1). The number of vertices in Γ.
2). The number of edges in Γ.
3). Whether Γ is regular.
4). Whether Γ is regular with any fixed girth.

For adjacency matrix, the following quantities are determined by its spectrum.
5). Whether Γ is bipartite or not.
6). The number of closed walks of any length.

For Laplacian matrix, the following quantities are determined by its spectrum.
7). The number of components.
8). The number of spanning trees.
9). The sum of the squares of degrees of vertices.

Lemma 2. [7] Let Tn be a tree of order n and L(T ) be its line graph. Then λi(T ) = µi(L(T ))+2, where
1 ≤ i ≤ n

Lemma 3. [8, 10] For a graph Γ with a non-empty vertex set V(Γ) and non-empty edge set E(Γ), let
∆(Γ) be the maximum vertex degree of Γ. Then we have the following inequality.

∆(Γ) + 1 ≤ µ1(Γ) ≤ max
{dvi(dvi + mvi) + dvj(dvj + mvj)

dvi + dvj

: vivj ∈ E(Γ)
}

where mvi denotes the average of the degrees of the vertices adjacent to a vertex vi in Γ.

3. Determination of Tn′(p, p, p) by Laplacian spectrum

In this section, first we establish the following two lemmas which will be used in our main result.

Lemma 4. Let Γ
′

and Γ = Tn′(p, p, p), where n′ = n + 3p with n ≥ 5 and p ≥ 2 are cospectral graphs
with respect to the Laplacian matrix. Then Γ

′

has tp+2 = 1, tp+1 = 2, t2 = n− 3, and t1 = 3p, where ti is
number of the vertices of degree i in Γ

′

.

Proof. Given that the graphs Γ
′

and Γ are cospectral with respect to the Laplacian matrrix. Then by 1,
2, 7, and 8 of Lemma 1, the graph Γ

′

is a tree with |V(Γ
′

)| = n + 3p and |E(Γ
′

)| = n + 3p − 1. From
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Lemma 3, we have p + 3 ≤ µ1 ≤ p + 4 − 2
p+3 , which implies the maximum degree in the graph Γ

′

is
at most p + 2. Now, assume that the graph Γ

′

has ti vertices of degree i, for i = 1, 2, . . . ,∆
′

, where
∆
′

≤ p + 2 is the maximum degree of Γ
′

. The following equations follow from 1, 2, and 9 of Lemma 1.

∆
′∑

i=1

ti = n + 3p (3.1)

∆
′∑

i=1

iti = 2(n + 3p − 1) (3.2)

∆
′∑

i=1

i2ti = 3p2 + 11p + 4n − 6 (3.3)

Then
∆
′∑

i=1

(i2 − 3i + 2)ti = 3p2 − p (3.4)

The line graphs of Γ and Γ
′

have same spectrum with respect to the adjacency matrix, by Lemma 2.
Hence, from 6 of Lemma 1, they have same number of triangles (closed walk of length three).
Therefore,

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti

First we show that there is only one vertex of degree p + 2, i.e., tp+2 = 1. If tp+2 = 0, i.e., ∆
′

< p + 2

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti ≤

p + 1
6

∆
′∑

i=1

(i − 1)(i − 2)ti

i.e.,

3p2 ≤

∆
′∑

i=1

(i2 − 3i − 2)ti

By Eq (3.4), p ≤ 0 which is a contradiction.
If tp+2 ≥ 2, i.e., there are at least two vertices of degree ∆ = p + 2, then we have

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti ≥ 2

(
p + 2

3

)
+

p+1∑
i=1

(
i
3

)
ti

i.e.,

−

(
p + 2

3

)
+ 2

(
p + 1

3

)
≥

p+1∑
i=1

(
i
3

)
ti

This is a contradiction, hence tp+2 = 1.
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Second we prove that tp+1 = 2. If tp+1 ≥ 3, i.e., there are at least three vertices of degree p + 1, then
we have

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti ≥

(
p + 2

3

)
+ 3

(
p + 1

3

)
+

p∑
i=1

(
i
3

)
ti

i.e.,

−

(
p + 1

3

)
≥

p∑
i=1

(
i
3

)
ti

This is a contradiction, so tp+1 ≤ 2.
If tp+1 = 0, i.e., there is no vertex of degree p + 1, then we have

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti ≤

(
p + 2

3

)
+

p∑
i=1

(
i
3

)
ti

i.e.,

2
(
p + 1

3

)
≤

p
6

p∑
i=1

(i − 1)(i − 2)ti

i.e.,

2(p + 1)(p − 1) ≤
p∑

i=1

(i − 1)(i − 2)ti

i.e.,

2(p + 1)(p − 1) + p(p + 1) ≤
p∑

i=1

(i − 1)(i − 2)ti + p(p + 1)

i.e.,

3p2 + p − 2 ≤
p+2∑
i=1

(i − 1)(i − 2)ti

By Eq (3.4), 3p2 + p − 2 ≤ 3p2 − p, i.e., 2p − 2 ≤ 0, a contradiction.
If tp+1 = 1, i.e., one vertex of degree p + 1, then

(
p + 2

3

)
+ 2

(
p + 1

3

)
=

∆
′∑

i=1

(
i
3

)
ti ≤

(
p + 2

3

)
+

(
p + 1

3

)
+

p∑
i=1

(
i
3

)
ti

i.e., (
p + 1

3

)
≤

p
6

p∑
i=1

(i − 1)(i − 2)ti

i.e.,

(p + 1)(p − 1) ≤
p∑

i=1

(i − 1)(i − 2)ti
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i.e.,

(p + 1)(p − 1) + p(p − 1) + p(p + 1) ≤
p∑

i=1

(i − 1)(i − 2)ti + p(p − 1) + p(p + 1)

i.e.,

3p2 − 1 ≤
p+2∑
i=1

(i2 − 3i + 2)ti

By Eq (3.4), 3p2 − 1 ≤ 3p2 − p, i.e., p − 1 ≤ 0, a contradiction. Thus tp+1 = 2.
For each i = 3, 4, . . . , p, ti = 0 from Eq (3.4). Finally, Eqs (3.1) and (3.2), immediately yield t1 = 3p

and t2 = n − 3. This finishes the proof. �

Lemma 5. Let Γ
′

be any tree of order n + 3p, where n ≥ 5 and p ≥ 2, such that tp+2 = 1, tp+1 = 2,
t2 = n − 3, and t1 = 3p. Then Γ

′

is isomorphic to Γ = Tn′(p, p, p).

Proof. It is clear that there exists 2, p + 2, 2p, and n − 5 vertices of degree p + 2, p + 1, p, and 2,
respectively in the line graph L(Γ). Here, we divide the proof into two main cases.

Case 1. When two vertices of degree p + 1 are joined by a path of length l1 + 1, (l1 ≥ 0) and one
vertex of them joined by a path of length l2 + 1, (l2 ≥ 0) with a vertex of degree p + 2. Without loss of
generality, suppose that there exist p− x, p− y−1, and p + 1− z vertices of degree 1 which are adjacent
to the vertex of degree p + 1, p + 1, and p + 2, respectively in the graph Γ

′

as shown in Figure 4. Where
0 ≤ x ≤ p, 0 ≤ y ≤ p − 1, and 0 ≤ z ≤ p + 1. Therefore, we have

l1

1l′x − 1l′x

1l′1 − 1l′1

.

.

.

.

.

.x
p

.

.

.

.

.

.

1 l′′y − 1 l′′y

1 l′′1 − 1 l′′1 y
p

l2

.

.

.

.

.

.

1 l′′′z − 1 l′′′z

1 l′′′1 − 1 l′′′1 z
p + 1

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4. Graph Γ
′

.

l1 + l2 +

x∑
i=0

l′i +

y∑
j=0

l′′j +

z∑
k=0

l′′′k + 3p + 3 = n + 3p (3.5)

where l
′

0 = l
′′

0 = l
′′′

0 = 0. That is

l1 + l2 +

x∑
i=0

l′i +

y∑
j=0

l′′j +

z∑
k=0

l′′′k = n − 3 (3.6)

For the values of l1, l2, there exits four different shape of the graph Γ
′

. Let t
′

i be the number of the
vertices of degree i. Clearly, there exists t

′

1 = x + y + z, t
′

2 = n − i − x − y − z, t
′

p = 2p − x − y − 1,
t
′

p+1 = p+ j+ x+y−z, t
′

p+2 = k+z, t
′

2p = r, t
′

2p+1 = s, and t
′

l = 0 for l = 3, 4, . . . , p−1 and p+2 < l < 2p
in the line graph L(Γ

′

), where the values of i, j, k, r and s are listed in Table 1 corresponding to each
shape of L(Γ

′

).
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Table 1. Parameters for the Eq (3.7).

Values of l1 and l2 i j k r s
l1 = 0, l2 = 0 3 1 0 1 1
l1 = 0, l2 ≥ 1 4 2 1 1 0
l1 ≥ 1, l2 = 0 4 3 0 0 1
l1 ≥ 1, l2 ≥ 1 5 4 1 0 0

From 2 and 5 of Lemma 1, the line graphs L(Γ) and L(Γ
′

) have the same number of edges and closed
walks of length 4, respectively. Clearly, they have the same number of 4-cycles 2

(
p+1

4

)
+

(
p+2

4

)
. Hence

the line graphs L(Γ) and L(Γ
′

) have the same number of induced paths of length 2. Then we have

2
(
p + 2

2

)
+ (p + 2)

(
p + 1

2

)
+ 2p

(
p
2

)
+ (n − 5)

(
2
2

)
= s

(
2p + 1

2

)
+ r

(
2p
2

)
+ (k + z)

(
p + 2

2

)
+ (p + j + x + y − z)

(
p + 1

2

)
+ (2p − x − y − 1)

(
p
2

)
+ (n − i − x − y − z)

(
2
2

)
i.e.,

(4s + 4r + j + k − 5)p2 + (2s − 2r + j + 3k + 2x + 2y + 2z − 7)p − 2(i − k + x + y − 3) = 0 (3.7)

Since p ≥ 2, 0 ≤ x ≤ p, 0 ≤ y ≤ p − 1, and 0 ≤ z ≤ p + 1. For each case of l1 and l2 that mentioned in
Table 1 and take corresponding values of i, j, k, r, s. It is easy to check that the Eq (3.7) is not equal to
zero, which is a contradiction.

Case 2. When a vertex of degree p + 2 joined with two vertices of degree p + 1 by paths of length
l1 + 1, (l1 ≥ 0) and l2 + 1, (l2 ≥ 0), respectively. Without loss of generality, suppose that there exits
p− x, p− x and p− z vertices of degree 1 which are adjacent to vertex of degree p + 1, p + 1, and p + 2
respectively in the graph Γ

′

as shown in Figure 5. Where 0 ≤ x, y, z ≤ p. Therefore, we have same two
equations as Eqs (3.5) and (3.6).

.

.

.

.

.

.

1l′x − 1l′x
. . .

1l′1 − 1l′1
. . .

x
p

p

1 l′′y − 1 l′′y
. . .

1 l′′1 − 1 l′′1
. . .

y
p

1 l′′′1 − 1 l′′′1
. . .

1 l′′′z − 1 l′′′z
. . .

. . . . . .

z

.

.

.

.

.

.l1 l2

Figure 5. Graph Γ
′

.

For the values of l1, l2, there exits three different shape of the graph Γ
′

. Clearly, there exits t
′

1 =

x + y + z, t
′

2 = n− i− x− y− z, t
′

p = 2p− x− y, t
′

p+1 = p + j + x + y− z, t
′

p+2 = k + z, t
′

2p+1 = r and t
′

l = 0,
for l = 3, 4, . . . , p − 1 and p + 2 < l < 2p + 1 in the line graph L(Γ

′

). Where values of i, j k, and r are
listed in Table 2 corresponding to each shape of L(Γ

′

).
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Table 2. Parameters for the Eq (3.8).

Values of l1 and l2 i j k r
l1 = 0, l2 = 0 3 0 0 2

l1 = 0, l2 ≥ 1 or l1 ≥ 1, l2 = 0 4 1 1 1
l1 ≥ 1, l2 ≥ 1 5 2 2 0

By same argument that we used in first case, we have

2
(
p + 2

2

)
+ (p + 2)

(
p + 1

2

)
+ 2p

(
p
2

)
+ (n − 5)

(
2
2

)
= r

(
2p + 1

2

)
+ (k + z)

(
p + 2

2

)
+ (p + j + x + y − z)

(
p + 1

2

)
+ (2p − x − y)

(
p
2

)
+ (n − i − x − y − z)

(
2
2

)
i.e.,

( j + k + 4r − 4)p2 + ( j + 3k + 2r + 2x + 2y + 2z − 8)p − 2(i − k + x + y − 3) = 0 (3.8)

Since p ≥ 2 and 0 ≤ x, y, z ≤ p. For first two cases of l1 and l2 that mentioned in Table 2 and
take their corresponding values of i, j, k, r, s. It is easy to check that the Eq (3.8) is not equal to zero,
a contradiction. For the last case l1, l2 ≥ 1, we obtained (x + y + z)p − (x + y) = 0, so x = y = z = 0.
By Eq (3.6), we have l1 + l2 = n − 3. Thus all the vertices of degree 1 adjacent to the two vertices of
degree p + 1 and one vertex of degree p + 2. Hence, Γ

′

is isomorphic to Γ. �

Now, we ready to prove our main result.

Theorem 6. The tree Tn′(p, p, p), where n′ = n + 3p with n ≥ 5 and p ≥ 2, is determined by its
Laplacian spectrum.

Proof. The proof of this result immediately follows from Lemmas 4 and 5. �
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