The purpose of this work is to find the numerical solution of the Caputo time-fractional diffusion equation using the modified cubic exponential B-spline (CExpB-spline) collocation technique. First, the CExpB-spline functions are modified and then used to discretize the space derivatives. Three numerical examples are considered for checking the efficiency and accuracy of the method. The obtained results are compared with those reported earlier showing that the present technique gives highly accurate results. Von Neumann stability is carried out which gives the guarantee that the technique is unconditionally stable. The rate of convergence is also obtained. Furthermore, this technique is efficient and requires less storage.
Citation: Mohammad Tamsir, Neeraj Dhiman, Deependra Nigam, Anand Chauhan. Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique[J]. AIMS Mathematics, 2021, 6(4): 3805-3820. doi: 10.3934/math.2021226
The purpose of this work is to find the numerical solution of the Caputo time-fractional diffusion equation using the modified cubic exponential B-spline (CExpB-spline) collocation technique. First, the CExpB-spline functions are modified and then used to discretize the space derivatives. Three numerical examples are considered for checking the efficiency and accuracy of the method. The obtained results are compared with those reported earlier showing that the present technique gives highly accurate results. Von Neumann stability is carried out which gives the guarantee that the technique is unconditionally stable. The rate of convergence is also obtained. Furthermore, this technique is efficient and requires less storage.
[1] | A. S. Alshomrani, S. Pandit, A. K. Alzahrani, M. S. Alghamdi, R. Jiwari, A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations, Eng. Computation., 34 (2017), 1257–1276. doi: 10.1108/EC-05-2016-0179 |
[2] | P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. doi: 10.1115/1.3167615 |
[3] | C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743–1750. doi: 10.1016/j.jcp.2011.11.008 |
[4] | P. K. Chattaraj, S. R. Koneru, B. M. Deb, Stability analysis of finite difference schemes for quantum mechanical equations of motion, J. Comput. Phys., 72 (1987), 504–512. doi: 10.1016/0021-9991(87)90098-2 |
[5] | W. H. Deng, C. P. Li, The evolution of chaotic dynamics for fractional unified system, Phys. Lett. A, 372 (2008), 401–407. doi: 10.1016/j.physleta.2007.07.049 |
[6] | N. J. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. |
[7] | B. Ghanbari, A. Atangana, An efficient numerical approach for fractional diffusion partial differential equations, Alex. Eng. J., 59 (2020), 2171–2180. doi: 10.1016/j.aej.2020.01.042 |
[8] | M. Giona, S. Cerbelli, H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A., 191 (1992), 449–453. doi: 10.1016/0378-4371(92)90566-9 |
[9] | E. Goldfain, Fractional dynamics, Cantorian space-time and the gauge hierarchy problem, Chaos, Soliton. Fract., 22 (2004), 513–520. doi: 10.1016/j.chaos.2004.02.043 |
[10] | E. Hanert, On the numerical solution of space-time fractional diffusion models, Comput. Fluids, 46 (2011), 33–39. doi: 10.1016/j.compfluid.2010.08.010 |
[11] | B. A. Jacobs, High-Order Compact Finite Difference and Laplace Transform Method for the solution of Time-Fractional Heat Equations with Dirchlet and Neumann Boundary conditions, Numer. Meth. Part. D. E., 32 (2016), 1184–1199. doi: 10.1002/num.22046 |
[12] | R. Jiwari, A. S. Alshomrani, A new algorithm based on modified trigonometric cubic B-splines functions for nonlinear Burgers'-type equations, Int. J. Numer. Method. H., 27 (2017), 1638–1661. doi: 10.1108/HFF-05-2016-0191 |
[13] | R. Jiwari, S. Pandit, M. E. Koksal, A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems, Comput. Appl. Math., 38 (2019). |
[14] | M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, Commun. Nonlinear Sci., 16 (2011), 2535–2542. doi: 10.1016/j.cnsns.2010.09.007 |
[15] | Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. doi: 10.1016/j.jcp.2007.02.001 |
[16] | F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191 (2007), 12–20. |
[17] | F. Mainardi, Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena, Chaos Soliton. Fract., 7 (1996), 1461–1477. doi: 10.1016/0960-0779(95)00125-5 |
[18] | R. C. Mittal, R. Rohila, A fourth order cubic B-spline collocation method for the numerical study of the RLW and MRLW equations, Wave Motion, 80 (2018), 47–68. doi: 10.1016/j.wavemoti.2018.04.001 |
[19] | J. Q. Murillo, S. B. Yuste, An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, J. Computat. Nonlin. Dyn., 6 (2011), 021014. doi: 10.1115/1.4002687 |
[20] | D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138–1145. doi: 10.1016/j.camwa.2008.02.015 |
[21] | G. G. O'Brien, M. A. Hyman, S. Kaplan, A study of the numerical solution of partial differential equations, J. Math. Phys., 29 (1950), 223–251. doi: 10.1002/sapm1950291223 |
[22] | M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A., 314 (2002), 749-755. doi: 10.1016/S0378-4371(02)01048-8 |
[23] | P. Roul, V. M. K. P. Goura, A high order numerical method and its convergence for time-fractional fourth order partial differential equations, Appl. Math. Comput., 366 (2020), 124727. |
[24] | K. Sayevand, A. Yazdani, F. Arjang, Cubic B-spline collocation method and its applicationfor anomalous fractional diffusion equations in transport dynamic systems, J. Vib. Control, 22 (2016), 2173–2186. doi: 10.1177/1077546316636282 |
[25] | H. Sun, W. Chen, K. Y. Sze, A semi-discrete finite element method for a class of time-fractional diffusion equations, Philos. T. R. Soc. A., 371 (2013), 1–15. |
[26] | N. H. Sweilam, M. M. Khader, A. M. S. Mahdy, Crank-Nicolson finite difference method for solving time-fractional diffusion equation, Journal of Fractional Calculus and Applications, 2 (2012), 1–9. |
[27] | C. Tadjeran, M. M. Meerschaert, H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205–213. doi: 10.1016/j.jcp.2005.08.008 |
[28] | H. S. Shukla, M. Tamsir, An exponential cubic B-spline algorithm for multi-dimensional convection-diffusion equations, Alex. Eng. J., 57 (2018), 1999–2006. doi: 10.1016/j.aej.2017.04.011 |
[29] | H. S. Shukla, M. Tamsir, R. Jiwari, V. K. Srivastava, A numerical algorithm for computation modeling of 3D nonlinear wave equations based on exponential modified cubic B-spline differential quadrature method, Int. J. Comput. Math., 95 (2017), 752–766. |
[30] | M. Tamsir, V. K. Srivastava, N. Dhiman, A. Chauhan, Numerical Computation of Nonlinear Fisher's Reaction–Diffusion Equation with Exponential Modified Cubic B-Spline Differential Quadrature Method, Int. J. Appl. Comput. Math, 4 (2018), 1–13. |
[31] | A. Verma, R. Jiwari, M. Koksal, Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions, Adv. Differ. Equ., 2014 (2014), 1–13. doi: 10.1186/1687-1847-2014-1 |
[32] | P. Zhuang, F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99. doi: 10.1007/BF02832039 |
[33] | L. Wu, S. Zhai, A new high order ADI numerical difference formula for time-fractional convection-diffusion equation, Appl. Math. Comput., 387 (2020), 124564. |
[34] | S. Zhai, Z. Weng, X. Feng, J. Yuan, Investigations on several high-order ADI methods for timespace fractional diffusion equation, Nume. Algorithms, 82 (2019), 69-106. doi: 10.1007/s11075-018-0594-z |
[35] | S. Zhai, X. Feng, A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids, Numer. Heat Tr. B-Fund., 69 (2016), 217–233. |
[36] | S. Zhai, Z. Weng, D. Gui, X. Feng, High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion, Int. J. Heat Mass Tran., 84 (2015), 440–447. |
[37] | S. Zhai, X. Feng, Y. He, An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation, J. Comput. Phys., 269 (2014), 138–155. |
[38] | S. Zhai, D. Gui, P. Huang, X. Feng, A novel high-order ADI method for 3D fractionalconvection–diffusion equations, Int. Commun. Heat Mass, 66 (2015), 212–217. |
[39] | D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional Dynamics and Control, Springer, 2012. |
[40] | M. Caputo, Elasticita e Dissipazione, Zani-Chelli, Bologna, 1969. |
[41] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in Continuum mechanics, Springer Verlag Wien, 1997. |
[42] | R. Hilfer, Applications of fractional calculus in physics, World scientific, Singapore, 2000. |
[43] | A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus Continuum Mechanics, Springer Verlag Wien, 1997. |
[44] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, 1993. |
[45] | K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. |
[46] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |