Research article

A robust technique of cubic Hermite splines to study the non-linear reaction-diffusion equation with variable coefficients

  • Received: 06 December 2023 Revised: 07 February 2024 Accepted: 21 February 2024 Published: 27 February 2024
  • MSC : 35K51, 35K55, 65M06, 65M12

  • The present study proposes a hybrid numerical technique to discuss the solution of non-linear reaction-diffusion equations with variable coefficients. The perturbation parameter was assumed to be time-dependent. The spatial domain was discretized using the cubic Hermite splines collocation method. These splines are smooth enough to interpolate the function as well as its tangent at the node points. The temporal domain was discretized using the Crank-Nicolson scheme, commonly known as the CN scheme. The cubic Hermite splines are convergent of order $ h^4 $, and the CN scheme is convergent of order $ \Delta t^2 $. The technique is found to be convergent of order $ O(h^{2}\big(\gamma_2 \varepsilon_j\Delta t + \gamma_0(1+\bar{\alpha})h^2\big)+\Delta t^2) $. The step size in the space direction is taken to be $ h $, and the step size in the time direction is $ \Delta t $. Stability of the proposed scheme was studied using the $ L_2 $ and $ L_{\infty} $ norms. The proposed scheme has been applied to different sets of problems and is found to be more efficient than existing schemes.

    Citation: Abdul-Majeed Ayebire, Inderpreet Kaur, Dereje Alemu Alemar, Mukhdeep Singh Manshahia, Shelly Arora. A robust technique of cubic Hermite splines to study the non-linear reaction-diffusion equation with variable coefficients[J]. AIMS Mathematics, 2024, 9(4): 8192-8213. doi: 10.3934/math.2024398

    Related Papers:

  • The present study proposes a hybrid numerical technique to discuss the solution of non-linear reaction-diffusion equations with variable coefficients. The perturbation parameter was assumed to be time-dependent. The spatial domain was discretized using the cubic Hermite splines collocation method. These splines are smooth enough to interpolate the function as well as its tangent at the node points. The temporal domain was discretized using the Crank-Nicolson scheme, commonly known as the CN scheme. The cubic Hermite splines are convergent of order $ h^4 $, and the CN scheme is convergent of order $ \Delta t^2 $. The technique is found to be convergent of order $ O(h^{2}\big(\gamma_2 \varepsilon_j\Delta t + \gamma_0(1+\bar{\alpha})h^2\big)+\Delta t^2) $. The step size in the space direction is taken to be $ h $, and the step size in the time direction is $ \Delta t $. Stability of the proposed scheme was studied using the $ L_2 $ and $ L_{\infty} $ norms. The proposed scheme has been applied to different sets of problems and is found to be more efficient than existing schemes.



    加载中


    [1] B. Gurbuz, M. Sezer, Laguerre polynomial approach for solving Lane-Emden type functional differential equations, Appl. Math. Comput., 242 (2014), 255–264. http://dx.doi.org/10.1016/j.amc.2014.05.058 doi: 10.1016/j.amc.2014.05.058
    [2] S. Yuzbasi, M. Sezer, An improved Bessel collocation method with a residual error function to solve a class of Lane-Emden differential equations, Math. Comput. Model., 57 (2013), 1298–1311. http://dx.doi.org/10.1016/j.mcm.2012.10.032 doi: 10.1016/j.mcm.2012.10.032
    [3] B. Mehta, R. Aris, A note on a form of the Emden-Fowler equation, J. Math. Anal. Appl., 36 (1971), 611–621. http://dx.doi.org/10.1016/0022-247X(71)90043-6 doi: 10.1016/0022-247X(71)90043-6
    [4] J. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360. http://dx.doi.org/10.1137/1017036 doi: 10.1137/1017036
    [5] A. Verma, M. Kumar, Numerical solution of third-order Emden-Fowler type equations using artificial neural network technique, Eur. Phys. J. Plus, 135 (2020), 751. http://dx.doi.org/10.1140/epjp/s13360-020-00780-3 doi: 10.1140/epjp/s13360-020-00780-3
    [6] G. File, T. Aga, Numerical solution of quadratic Riccati differential equations, Egyptian Journal of Basic and Applied Sciences, 3 (2016), 392–397. http://dx.doi.org/10.1016/j.ejbas.2016.08.006 doi: 10.1016/j.ejbas.2016.08.006
    [7] S. Arora, I. Bala, Numerical study of the coupled Burger and Burger Huxley equations using Bessel collocation scheme, MESA, 14 (2023), 323.
    [8] W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. http://dx.doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
    [9] I. Kaur, S. Arora, I. Bala, An improvised technique of quintic Hermite splines to discretize generalized Burger Huxley type equations, Iranian Journal of Numerical Analysis and Optimization, 13 (2023), 59–79. http://dx.doi.org/10.22067/ijnao.2022.75871.1120 doi: 10.22067/ijnao.2022.75871.1120
    [10] S. Arora, R. Jain, V. Kukreja, A robust Hermite spline collocation technique to study generalized Burgers-Huxley equation, generalized Burgers-Fisher equation and Modified Burgers' equation, J. Ocean. Eng. Sci., in press. http://dx.doi.org/10.1016/j.joes.2022.05.016
    [11] M. Hausser, The Hodgkin-Huxley theory of the action potential, Nat. Neurosci., 3 (2000), 1165. http://dx.doi.org/10.1038/81426 doi: 10.1038/81426
    [12] K. Petousakis, A. Apostolopoulou, P. Poirazi, The impact of Hodgkin-Huxley models on dendritic research, J. Physiol., 601 (2023), 3091–3102. http://dx.doi.org/10.1113/JP282756 doi: 10.1113/JP282756
    [13] J. Bisquert, A frequency domain analysis of the excitability and bifurcations of the FitzHugh-Nagumo neuron model, J. Phys. Chem. Lett., 12 (2021), 11005–11013. http://dx.doi.org/10.1021/acs.jpclett.1c03406 doi: 10.1021/acs.jpclett.1c03406
    [14] A. Cevikel, A. Bekir, O. Arqub, M. Abukhaled, Solitary wave solutions of Fitzhugh-Nagumo-type equations with conformable derivatives, Front. Phys., 10 (2022), 1028668. http://dx.doi.org/10.3389/fphy.2022.1028668 doi: 10.3389/fphy.2022.1028668
    [15] J. Villadsen, W. Stewart, Solution of boundary value problem by orthogonal collocation, Chem. Eng. Sci., 20 (1995), 3981–3996. http://dx.doi.org/10.1016/0009-2509(96)81831-8 doi: 10.1016/0009-2509(96)81831-8
    [16] S. Arora, I. Kaur, Applications of quintic Hermite collocation with time discretization to singularly perturbed problems, Appl. Math. Comput., 316 (2018), 409–421. http://dx.doi.org/10.1016/j.amc.2017.08.040 doi: 10.1016/j.amc.2017.08.040
    [17] M. Noor, M. Waseem, Some iterative method for solving a system of nonlinear equations, Comput. Math. Appl., 57 (2009), 101–106. http://dx.doi.org/10.1016/j.camwa.2008.10.067 doi: 10.1016/j.camwa.2008.10.067
    [18] H. Zhang, X. Yang, Q. Tang, D. Xu, A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109 (2022), 180–190. http://dx.doi.org/10.1016/j.camwa.2022.01.007 doi: 10.1016/j.camwa.2022.01.007
    [19] S. Arora, S. Dhaliwal, V. Kukreja, Solution of two point boundary value problems using orthogonal collocation on finite elements, Appl. Math. Comput., 171 (2005), 358–370. http://dx.doi.org/10.1016/j.amc.2005.01.049 doi: 10.1016/j.amc.2005.01.049
    [20] S. Arora, I. Kaur, H. Kumar, V. Kukreja, A robust technique of cubic Hermite collocation for solution of two phase non linear model, Journal of King Saud University-Engineering Sciences, 29 (2017), 159–165. http://dx.doi.org/10.1016/j.jksues.2015.06.003 doi: 10.1016/j.jksues.2015.06.003
    [21] P. Mishra, K. Sharma, A. Pani, G. Fairweather, Orthogonal spline collocation for singularly perturbed reaction diffusion problems in one dimension, Int. J. Numer. Anal. Mod., 16 (2019), 647–667.
    [22] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. http://dx.doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [23] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. http://dx.doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [24] B. Bialecki, R. Fernandes, An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons, SIAM J. Sci. Comput., 28 (2006), 1054–1077. http://dx.doi.org/10.1137/050627885 doi: 10.1137/050627885
    [25] C. Hendricks, M. Ehrhardt, M. Gunther, High-order ADI schemes for diffusion equations with mixed derivatives in the combination technique, Appl. Numer. Math., 101 (2016), 36–52. http://dx.doi.org/10.1016/j.apnum.2015.11.003 doi: 10.1016/j.apnum.2015.11.003
    [26] M. Kadalbajoo, A. Awasthi, A numerical method based on Crank-Nicolson scheme for Burgers' equation, Appl. Math. Comput., 182 (2006), 1430–1442. http://dx.doi.org/10.1016/j.amc.2006.05.030 doi: 10.1016/j.amc.2006.05.030
    [27] Priyanka, S. Arora, F. Mebrek-Oudina, S. Sahani, Super convergence analysis of fully discrete Hermite splines to simulate wave behaviour of Kuramoto-Sivashinsky equation, Wave Motion, 121 (2023), 103187. http://dx.doi.org/10.1016/j.wavemoti.2023.103187 doi: 10.1016/j.wavemoti.2023.103187
    [28] D. Kumar, M. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential difference equations, Appl. Math. Model., 35 (2011), 2805–2819. http://dx.doi.org/10.1016/j.apm.2010.11.074 doi: 10.1016/j.apm.2010.11.074
    [29] S. Rubin, R. Graves, A cubic spline approximation for problems in fluid dynamics, NASA Technical Report, 1975, 19750025272.
    [30] E. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [31] I. Sneddon, Special function of mathematical physics and chemistry, 3 Eds, London: Longman Mathematical Texts, 1980.
    [32] M. Mazure, On the Hermite interpolation, CR Math. 340 (2005), 177–180. http://dx.doi.org/10.1016/j.crma.2004.11.004 doi: 10.1016/j.crma.2004.11.004
    [33] C. Hall, On error bounds for spline interpolation, J. Approx. Theory, 1 (1968), 209–218. http://dx.doi.org/10.1016/0021-9045(68)90025-7 doi: 10.1016/0021-9045(68)90025-7
    [34] P. Prenter, Splines and variational methods, New York: Wiley interscience publication, 1975.
    [35] R. Jiwari, R. Gupta, V. Kumar, Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Ain Shams Eng. J., 5 (2014), 1343–1350. http://dx.doi.org/10.1016/j.asej.2014.06.005 doi: 10.1016/j.asej.2014.06.005
    [36] R. Ezzati, K. Shakibi, Using Adomian's decomposition and multiquadric quasi-interpolation methods for solving Newell-Whitehead equation, Procedia Computer Science, 3 (2011), 1043–1048. http://dx.doi.org/10.1016/j.procs.2010.12.171 doi: 10.1016/j.procs.2010.12.171
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(290) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog