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Abstract: The present study proposes a hybrid numerical technique to discuss the solution of non-
linear reaction-diffusion equations with variable coefficients. The perturbation parameter was assumed
to be time-dependent. The spatial domain was discretized using the cubic Hermite splines collocation
method. These splines are smooth enough to interpolate the function as well as its tangent at the node
points. The temporal domain was discretized using the Crank-Nicolson scheme, commonly known as
the CN scheme. The cubic Hermite splines are convergent of order h4, and the CN scheme is convergent
of order ∆t2. The technique is found to be convergent of order O(h2(γ2ε j∆t + γ0(1 + ᾱ)h2) + ∆t2). The
step size in the space direction is taken to be h, and the step size in the time direction is ∆t. Stability of
the proposed scheme was studied using the L2 and L∞ norms. The proposed scheme has been applied
to different sets of problems and is found to be more efficient than existing schemes.
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1. Introduction

Non-linear partial differential equations are widely used by scientists and engineers to interpret
various physical phenomena, such as shallow water wave behavior, viscoelastic behavior of fluids,
and shock wave behavior in fluids. In different branches of science and engineering, various physical
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processes are described theoretically through ordinary or partial differential equations. The Lane-
Emden equation [1, 2], Emden Fowler equation [3–5], and Riccati equation [6] are examples of
ordinary differential equations which are used to describe various physical, chemical, and biological
phenomena, including the problems in fluid flow and engineering. Burger′s equation is used to
study the physical processes in aerospace engineering and fluid dynamics [7]. The non-local
diffusion equation is used to describe neutron transport in a nuclear reactor [8]. The Burger-
Huxley equation, Burger-Fisher equation [7, 9, 10], Hodgkin-Huxley equation [11, 12], and Fitzough-
Nagumo equation [13,14] have numerous applications in the field of physics, biology, fluid dynamics,
engineering, optics, and plasma physics, among others.

Consider the one-dimensional non-linear reaction-diffusion equation:

∂u
∂τ

= ε(τ)
∂2u
∂ζ2 + α(τ) f (u), Ω = I × (0,T ), (1.1)

where f (u) is the non-linear source function, ε(τ) is the function of time whose value lies between 0
and 1, and I = (a, b). The initial condition is taken to be continuous whereas boundary conditions are
assumed to be of the Dirichlet type. The initial condition is defined as:

u(ζ, 0) = g(ζ). (1.2)

Both the homogeneous Dirichlet type and non-homogeneous Dirichlet type boundary conditions have
been considered and are defined as:

u(a, τ) = K1(τ) and u(b, τ) = K2(τ), (1.3)

where, K1 and K2 are continuous functions of τ.
The simplified form of Eq (1.1) for ε(τ) = 1 was first proposed by Hodgkin and Huxley to explain

the propagation of action potentials in the squid giant axiom. The generalized Burger′s, generalized
Burger′s-Huxley, and generalized Burger′s-Fisher equations are the special cases of Eq (1.1) with
non-linear advection term and source term. These equations have numerous applications in reaction
mechanics and diffusion transport in fluids and semi-solid particles.

A variety of numerical techniques have been developed by different investigators to study the
solution behavior of non-linear partial differential equations [1, 5, 6, 15–18]. Lagurre polynomials
were utilized in [1] to study the behavior of the Lane-Emden equation whereas [2] has used the Bessel
collocation approach. The Emden-Fowler equation was solved using artificial neural networks by [5].
Orthogonal collocation on finite elements was used by [19] to discretize the non-linear heat conduction
equation. The coupled Burger and coupled Burger-Huxley equations were discretized using the Bessel
collocation method in [7]. The two phase non-linear reaction diffusion model was discretized using
cubic Hermite splines in [20], whereas singularly perturbed reaction diffusion equations were solved
by orthogonal cubic splines of order 3 and order 5 in [21]. The non-local Nagumo type equation was
solved by using a finite volume scheme in [22]. The non-local fourth-order sub-diffusion equation was
solved using orthogonal spline collocation in [18], and the non-local heat model was discretized using
the sinc collocation method in [23].

In the present study, cubic Hermite splines with the Crank-Nicolson scheme is used to discretize
the non-linear reaction-diffusion equation. The cubic Hermite splines are third-order Hermite splines
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that interpolate the function as well as its first-order derivative at node points. These splines have an
advantage over the cubic B-splines as these splines do not involve any fictitious node points and thus
are easily adapted to a computer program. The combination of cubic Hermite splines with the CN
scheme in the time direction gives an advantage to discretize the equation in both the the space and,
the time directions. It reduces the stiffness not only in space direction but also in time direction.

The present paper has been weaved into different sections and sub-sections, from the introduction
to the conclusions. The CN scheme is discussed in Section 2 and the cubic Hermite splines are
explained in Section 3. The stability and convergence of the proposed technique is discussed in Section
4, whereas Section 5 is composed of the numerical applications. The conclusions of the study are
presented in Section 6.

2. Crank-Nicolson scheme

A variety of numerical techniques for solving two point boundary value problems in the time
direction have been developed. The Crank-Nicolson (CN) and Alternate Direction Implicit scheme
are two such examples. The Alternate Direction Implicit scheme, commonly known as ADI scheme,
was introduced by Peaceman and Rachford to study second-order parabolic boundary value problems
over the rectangular domain. ADI methods are capable of solving multidimensional problems into
collection of one-dimensional problems [24]. Other than the simple ADI scheme or the Peaceman-
Rachford ADI scheme, [25] discussed certain other classifications of ADI schemes, such as the
Douglas scheme, Craig-Sneyd scheme, modified Craig-Sneyd scheme, Hundsdorfer-Verwer scheme,
etc. Crank-Nicolson scheme, or CN scheme, is also an efficient time integration scheme to solve
one-dimensional reaction-diffusion problems. In the present study, the CN scheme as proposed
by [26] operates on the mean of a function over the interval [τ j τ j+1] with a uniform distribution
of points [16, 27].

Define the partition πτ : 0 = τ0 < τ1 < . . . < τM = T with ∆t = τ j+1 − τ j. Consider the general
non-linear reaction-diffusion equation defined by Eq (1.1)

u(ζ, τ j+1) − u(ζ, τ j)
∆t

= ε(τ j)

u j+1
ζζ + u j

ζζ

2

 + α(τ j)
f (u j+1) + f (u j)

2
, (2.1)

u(ζ, τ0) = g(ζ).

For convenience, we write u(ζ, τ j+1) = u j+1.

Lemma 1. [16, 28] If
∣∣∣∣∂iu
∂τi

∣∣∣∣ ≤ C, i = 0, 1, and (ζ, τ) ∈ Ω̄, then the local truncation error e is given by

e = C∆t3,

and the global truncation error E is given by

E = C∆t2.

Theorem 1. [16, 28] Let U(ζ,τ) be a function such that £U=0 and U ≤ C. Then, Uτ is also bounded
by some constant C, where C is an arbitrary constant.
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For the implementation of the technique on non-linear singularly perturbed equations, let u j+1 be
the approximating polynomial function at time step τ j+1. Also, let ∆t = T/M, M > 0. Then, τ j = j∆t
for j = 0, 1, 2, . . . ,M. The semi-discretized form of Eq (2.1) follows as:

u j+1 − u j

∆t
= ε ju

j+ 1
2

ζζ + α j f j+ 1
2 , (2.2)

with corresponding boundary conditions are given by Eqs (1.2) and (1.3), respectively. For any function
F,

F j+ 1
2 =

F j+1 + F j

2
. (2.3)

Throughout this paper, C denotes the generic constant.
After the implementation of the CN scheme, Eq (1.1) reduces to the semi-discretized form as

follows:

u(ζ, τ j+1) − u(ζ, τ j)
∆t

= ε j

u j+1
ζζ + u j

ζζ

2

 + α j
f (u j+1) + f (u j)

2
, j = 0, 1, 2, . . . ,M. (2.4)

The non-linear function term f (u j+1) is quasi-linearized using the formula given by [29]:

f (u j+1) = f (u j) + (u j+1 − u j)
d f
du j

+ O(∆t2), (2.5)

where, d f
du j

represents the derivative of f (u) at τ j. After substituting Eq (2.5) in Eq (2.4) and rearranging
the terms, one gets the iterated scheme

u j+1 −
ε j∆t

2
u j+1
ζζ −

α j∆t fu j

2
u j+1 = u j +

ε j∆t
2

u j
ζζ −

α j∆t fu j

2
u j + α j∆t f (u j), (2.6)

where f j
u represents d f

du j
for convenience. The iterative form of Eq (2.6) can be expressed in operator

form at the ( j + 1)th time step in the following manner:

L(u j+1) = Gτ j , (2.7)

where, L(u j+1) = u j+1−
ε j∆t

2 u j+1
ζζ −

α j∆t fu j

2 u j+1 and Gτ j = u j +
ε j∆t

2 u j
ζζ −

α j∆t fu j

2 u j +α j∆t f (u j). Since there is
no singular term on the right-hand side, Eq (2.7) is convergent, which leads to the solution of Eq (1.1).

3. Cubic Hermite splines

Orthogonal splines represent the piecewise orthogonal polynomials used to interpolate the function
at node points. Hermite and Lagrange′s interpolating polynomials are such orthogonal splines that are
often used to interpolate functions. Hermite interpolating polynomials of order ‘k’ are considered as
an extension of kth-order Lagrangian interpolating polynomials [7, 9, 10, 16, 20, 21, 27]. A continuity
condition is imposed at node points in the Lagrangian interpolating polynomials as these polynomials
can only interpolate the function at node points. Hermite interpolating polynomials of order ‘2k + 1’
interpolate the function as well as its kth order derivative at node points. This feature of Hermite
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interpolating polynomials makes it superior over Lagrangian interpolating polynomials. Hence, th
kth-order Hermite polynomial in ζ is a polynomial of order 2k + 1, and, therefore, cubic Hermite
interpolating polynomials are a particular case of general Hermite interpolating polynomials for k = 1.
This consists of two node points and two tangents at these node points. The explanation of cubic
Hermite splines is given hereunder.

Consider an interval I = (a, b), and let π be the partition of (a, b) such that:

πζ : a = ζ0 ≤ ζ1 ≤ ζ2 ≤ . . . ≤ ζn = b.

Let P3 be the set of all polynomials of degree less than or equal to 3 defined on [ζi−1, ζi]. Let v be a
continuously differentiable function defined on Ī such that v is the cubic Hermite approximation of u
on I. LetMµ be the space of all continuously differentiable functions defined on [ζi−1, ζi] such that

Mµ = {vεC1[a, b]|v ∈ P3 on [ζi−1, ζi], i = 1, 2, . . . , n},
M0

µ = {vεMµ|v(a) = K1 and v(b) = K2}.
(3.1)

If boundary conditions are of the homogeneous type, then the dimension of Mµ = 2n, and if the
boundary conditions are of the non-homogeneous type, then the dimension ofMµ = 2n + 2 [24].

The cubic Hermite polynomials Pµ(ζ) and Qµ(ζ) for k = 1 are defined as

Pµ(ζ) =


3
(
ζ−ζµ−1

ζµ−ζµ−1

)2
− 2

(
ζ−ζµ−1

ζµ−ζµ−1

)3
, ζµ−1 ≤ ζ ≤ ζµ,

3
(
ζµ+1−ζ

ζµ+1−ζµ

)2
− 2

(
ζµ+1−ζ

ζµ+1−ζµ

)3
, ζµ ≤ ζ ≤ ζµ+1,

0, elsewhere,

(3.2)

Qµ(ζ) =


−

(ζ−ζµ−1)2

ζµ−ζµ−1
+

(ζ−ζµ−1)3

(ζµ−ζµ−1)2 , ζµ−1 ≤ ζ ≤ ζµ,
(ζµ+1−ζ)2

ζµ+1−ζµ
−

(ζµ+1−ζ)3

(ζµ+1−ζµ)2 , ζµ ≤ ζ ≤ ζµ+1,

0, elsewhere.

(3.3)

These piecewise cubics are designed such that the following identities hold: Pµ(ζi) = δµi; P′µ(ζi) = 0;
Qµ(ζi) = 0; Q′µ(ζi) = δµi.

To apply collocation in the interval [ζi−1, ζi], a new variable ξ is introduced in such a way that, as ζ
varies from ζi−1 to ζi, the variable ξ varies from 0 to 1. It converts the polynomials defined in Eqs (3.2)
and (3.3) into the following form:

H1(ξ) = 1 − 3ξ2 + 2ξ3,

H2(ξ) = hξ2(3 − 2ξ),
H3(ξ) = ξ(ξ − 1)2,

H4(ξ) = hξ2(ξ − 1).

These four cubic Hermite interpolating polynomials form the basis ofMµ for k = 1. These interpolating
polynomials are bounded and vary from −0.5 to 1. The graphical representation of these polynomials
is shown in Figure 1. In Table 1, the values of these polynomials and their respective derivatives are
shown at boundary points 0 and 1.
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Figure 1. Graphical representation of Hermite polynomials.

Table 1. Values of Hermite polynomials and derivatives at boundary points.

ξ = 0 ξ = 1 ξ = 0 ξ = 1
H1 1 0 H′1 0 0
H2 0 1 H′2 0 0
H3 0 0 H′3 1 0
H4 0 0 H′4 0 1

3.1. Collocation points

Let G be the space of all those points which are zeros of the shifted Legendre polynomials of
order n. Let η j be the node points of the Gauss-Legendre quadrature formula defined on [0, 1], where
j=1, 2,. . .,n − 1. The collocation points are defined by

ξ(µ−1)(n−1) = ζµ−1 + hµη j, µ = 1, 2, . . . ,m and j = 1, 2, . . . , n − 1,

where hµ = ζµ − ζµ−1. Runge’s divergence formula also states that non-uniform collocation points give
less error compared to uniform collocation points [15, 19].

Theorem 2. [30] The necessary and sufficient condition for a simple set Bn(ξ) of real polynomials to
be orthogonal w.r.t. the weight function ω(ξ) on a ≤ ξ ≤ b is∫ b

a
ω(ξ)ξmPn(ξ)dξ = 0, m = 0, 1, 2, 3, ..., (n − 1),

where, Pn(ξ) ∈ Bn(ξ). The roots of these polynomials are always real and distinct and lie in the interval
a ≤ ξ ≤ b.

The collocation points are chosen to be the zeros of the Legendre polynomials as these polynomials
have the tendency to reduce the error at corners as well as on averages [19]. The zeros of the Legendre
polynomials are calculated using the following recurrence relation given in [31]:

Pi(ξ) = (ξ − 0.5)Pi−1(ξ) −
(i − 1)2

4(2i − 3)(2i − 1)
Pi−2(ξ), i = 1, 2, . . . , n + 1.

The details of these polynomials are given elsewhere [19, 31].
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An application of orthogonal collocation using cubic Hermite splines as basis polynomials is applied
with consideration of the approximate solution of a semi-discrete scheme within each sub-element of
the partition πζ . A linear combination of four stencils with time dependent coefficients is proposed as
follows:

u(ξ, τ j) =

4∑
i=1

Hi(ξ)σ
j
i , (3.4)

where σ j
i are the unknown coefficients to be determined. After substituting Eq (3.4) into Eq (2.6), the

following system of equations is obtained:

4∑
i=1

(
Hi(ξ) −

ε j∆t
2h2 H′′i (ξ) −

α j∆t fu j

2
Hi(ξ)

)
σ j+1

=

4∑
i=1

(
Hi(ξ) +

ε j∆t
2h2 H′′i (ξ) −

α j∆t fu j

2
Hi(ξ)

)
σ j + α j∆t f

( 4∑
i=1

Hi(ξ)σ j
)
.

(3.5)

At the kth collocation point, Eq (3.5) reduces to

4∑
i=1

(
Hki −

ε j∆t
2h2 H′′ki −

α j∆t fu j

2
Hki

)
σ j+1 =

4∑
i=1

(
Hki +

ε j∆t
2h2 H′′ki −

α j∆t fu j

2
Hki

)
σ j + α j∆t f j

k , (3.6)

where Hki and H′′ki are the Hermite spline and the second-order derivative of the Hermite spline at the

kth collocation point, respectively, and f j
k = f

(∑4
i=1 Hkiσ

j
)
. This system of equations reduces to the

matrix form
Qρ j+1 = Hρ j + F j, (3.7)

where Q and H are almost quad-diagonal dominant matrices of order 2n × 2n, where n denotes the
number of sub-elements in πζ . ρn = [σn

1, σ
n
2, . . . , σ

n
2n]′; Fn = [ f n(ξ1), f n(ξ2), . . . , f n(ξ2n)]′. The resulting

system of matrix equations can be solved by any iterative technique.
In combined form, Eq (3.7) can be written as

Qρ = H , (3.8)

whereH = Hρ j + F j.

4. Stability and convergence analysis

The implementation of any numerical technique depends upon its stability. A method is said to be
stable if its jth iteration is bounded [9, 10]. The function f (u) is bounded over the domain I × [0,T ]
and satisfies the Lipschitz condition. d f

du is bounded over the desired domain such that | f (u) |≤ K1 and
|

d f
du |≤ K.

Define the inner product < u, v >=
∫

Ω
u(ζ)v(ζ)dζ, where < u, u >=|| u ||2.

Lemma 2. Let f (u) be defined on the domain I × [0,T ] such that f (u) satisfies Lagrange′s theorem. If
the derivative d f

du is bounded over the domain I × [0,T ] s.t. | d f
du |≤ K, then f (u) satisfies the Lipschitz

condition
| f (u1) − f (u2) |≤ K | u1 − u2 |, ∀u1, u2 ε I × [0,T ]. (4.1)
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Theorem 3. Cauchy-Schwarz inequality: Let u and v be any two functions defined on R. Then,

|< u, v >|≤|| u || || v || .

Lemma 3. [28] Let u(ζ, 0) be the positive continuous initial solution of the non-linear reaction-
diffusion equation with 0 ≤ u(ζ, 0) ≤ 1. Then, the bounds for solution u(ζ, t) remains constant with
time.

Throughout this paper, C denotes the generic constant.

Lemma 4. [28] Let u(ζ, τ) be the solution of Eq (1.1) in Ω̄. Then, the bounds on u(ζ, τ) is given by∣∣∣u(ζ, τ)
∣∣∣ ≤ C, ∀(ζ, τ) ∈ Ω̄. (4.2)

Lemma 5. [28] Maximum Principle: Let u(ζ, τ) be the solution of Eq (1.1) in Ω̄, u(ζ, τ) ≥ 0 on ∂Ω,
and Lu(ζ, τ) ≥ 0 on Ω. Then, u(ζ, τ) ≥ 0 on Ω̄.

Lemma 6. [28] Let u(ζ, τ) be the solution of Eq (1.1) in Ω̄. Then, the bound on the derivative of u
w.r.t. τ is given by ∣∣∣∂u

∂τ

∣∣∣ ≤ C, ∀(ζ, τ) ∈ Ω̄. (4.3)

Lemma 7. [28] Let u(ζ, τ) be the solution of Eq (1.1) in Ω̄. Then, the bound on the derivative of u
w.r.t. ζ is given by ∣∣∣∂iu

∂ζ i

∣∣∣ ≤ C, ∀(ζ, τ) ∈ Ω̄, i = 0, 1, 2. (4.4)

Lemma 8. [28] Let u(ζ, τ) be the solution of Eq (1.1) in Ω̄. Then, the bound on the derivatives of u
are given by ∣∣∣ ∂i+ ju

∂ζ i∂τ j

∣∣∣ ≤ C, ∀(ζ, τ) ∈ Ω̄, 0 ≤ i + j ≤ 3. (4.5)

Theorem 4. Let u j be the approximate solution of Eq (1.1) at τ j. Then, the following inequality holds:

|| u j+1 ||≤|| u j || +
η2

η1
|| u j

ζζ || +
α j∆t
η1
|| f j || . (4.6)

Proof. Now, using the bound for d f
du and redefining Eq (2.6), the following equation is obtained:(

1 −
α j∆tK

2

)
u j+1 −

ε j∆t
2

u j+1
ζζ =

(
1 −

α j∆tK
2

)
u j +

ε j∆t
2

u j
ζζ + α j∆t f j, (4.7)

where η1 =
(
1 − α j∆tK

2

)
and η2 =

ε j∆t
2 .

Taking the inner product of both sides of u j+1

η1 < u j+1, u j+1 > −η2 < u j+1
ζζ , u

j+1 > ≤ η1 < u j, u j+1 > +η2 < u j
ζζ , u

j+1 > +α j∆t < f j, u j+1 > . (4.8)

Now, using the fact that − < u j+1
ζζ , u

j+1 > ≥ 0, and from Cauchy-Schwarz inequality that |< u j+1, u j >|

≤ || u j+1 || || u j ||, Eq (4.8) takes the following form:

η1 || u j+1 ||2≤ η1 || u j+1 || || u j || +η2 || u
j
ζζ || || u

j+1 || +α j∆t || f j || || u j+1 || . (4.9)
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Dividing both sides by η1 || u j+1 ||,

|| u j+1 ||≤|| u j || +
η2

η1
|| u j

ζζ || +
α j∆t
η1
|| f j || . (4.10)

Using Lemmas 2, 3, and 8 and the principle of induction, it is clear that right-hand side is bounded.
This implies || u j+1 || is bounded, and hence the result. �

Lemma 9. [32] If any Hermite interpolation polynomial based on at most two distinct points has
a unique solution in Ω, then any Hermite interpolation polynomial has a unique solution in Ω. This
implies that any Hermite interpolation polynomial has a unique solution in the polynomial space Pn of
degree n on I.

Lemma 10. [32] The univariate Hermite interpolating polynomials are regular for any set of node
points. Moreover, Hermite interpolating polynomials are regular for any nodal set of points as well as
for any choice of derivatives to be interpolated.

Lemma 11. Let H̄ be the space of all Hermite interpolating polynomials of order 3 defined on [0 1].
Then, the Hermite splines of order 3 are bounded with upper bound unity. Moreover,

∑4
i=1 | Hi(ξ) |≤ 4

for all 0 ≤ ξ ≤ 1.

Lemma 12. [27, 33, 34] Let H ∈ H4
∆ξ(ξ) be the piecewise Hermite spline of degree 3 over the

subinterval [ξi, ξi+1] approximating U ∈ C4[a,b]. Then, || H(r) − U(r) ||∞≤ Cγrh4−r, r = 0, 1, 2, 3,
where H(r) represents the rth-order derivative of H. The values of γr are given in [27, 33, 34].

Theorem 5. Let u(ζ) be the exact solution of Eq (1.1) and ū(ζ) be the approximate solution of Eq (1.1)
in the space H3 of cubic Hermite interpolating polynomials of order 3 such that ū(ζ) ∈ C4[a, b]. Then,
the uniform error estimate is given by

|| u(ζ) − ū(ζ) ||∞≤ Ch2(γ2ε j∆t + γ0(1 + ᾱ)h2). (4.11)

Proof. Let H(ζ) be the unique cubic Hermite spline interpolate of u(ζ), and πζ =

a = ζ0 ≤ ζ1 ≤, ...,≤ ζn = b be the equi-spaced partition of [a,b] with uniform step-size h.
Consider∣∣∣∣∣∣L(u(ζk)) − L(H(ζk))

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣ε j∆t

2
(u′′(ζk) − H′′(ζk)) + (1 −

α j fu j∆t
2

)(u(ζk) − H(ζk))
∣∣∣∣∣∣
∞

≤
∣∣∣ε j∆t

2

∣∣∣ ∣∣∣∣∣∣(u′′(ζk) − H′′(ζk))
∣∣∣∣∣∣
∞

+
ᾱ

2

∣∣∣∣∣∣(u(ζk) − H(ζk))
∣∣∣∣∣∣
∞
,

(4.12)

where ᾱ/2 =
∣∣∣1 − α j fu j ∆t

2

∣∣∣.
Using Lemma 12, the following inequality is obtained:∣∣∣∣∣∣L(u(ζk)) − L(H(ζk))

∣∣∣∣∣∣
∞
≤ Ch2(γ2ε j∆t + γ0ᾱh2), (4.13)

where C is the generic constant and the values of γ0 and γ2 are given in [27, 33, 34].
Now, consider ∣∣∣∣∣∣L(ū(ζk)) − L(H(ζk))

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣Gτ j(ζk) − L(H(ζk))

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣L(u(ζk)) − L(H(ζk))

∣∣∣∣∣∣
∞

≤ Ch2(γ2ε j∆t + γ0ᾱh2). (4.14)
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Now, we use the fact that L(ū(ζk)) = Ḡτ j(ζk) and Qρ = H .
This implies that Q(ρ − ρ̄) = H − H̄ , and using Eq (4.14) we get∣∣∣∣∣∣H − H̄ ∣∣∣∣∣∣

∞
≤ max

∣∣∣∣∣∣Gτ j(ζk) − Ḡτ j(ζk)
∣∣∣∣∣∣
∞

≤ max
∣∣∣∣∣∣L(ū(ζk)) − L(H(ζk))

∣∣∣∣∣∣
≤ Ch2(γ2ε j∆t + γ0ᾱh2). (4.15)

Also, Q, the matrix of collocation coefficients, is bounded. Therefore, ||Q|| ≤ C and

⇒
∣∣∣∣∣∣H − H̄ ∣∣∣∣∣∣

∞
≤ Ch2(γ2ε j∆t + γ0(1 + α jη2∆t)h2). (4.16)

Now, ū(ζ) − H(ζ) =
∑4

i=1 Hi(ζ)(σi − σ̄i), and we get

⇒
∣∣∣∣∣∣ū(ζ) − H(ζ)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣ 4∑

i=1

Hi(ζ)(σi − σ̄i)
∣∣∣∣∣∣
∞

≤

4∑
i=1

|Hi(ζ)|
∣∣∣∣∣∣(σi − σ̄i)

∣∣∣∣∣∣
∞

≤ Ch2(γ2ε j∆t + γ0(1 + α jη∆t)h2).
(4.17)

According to [33], ∣∣∣∣∣∣u(ζ) − H(ζ)
∣∣∣∣∣∣
∞

= Cγ0h4. (4.18)

Now, using the triangle inequality,∣∣∣∣∣∣u(ζ) − ū(ζ)
∣∣∣∣∣∣
∞
≤

∣∣∣∣∣∣u(ζ) − H(ζ)
∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣ū(ζ) − H(ζ)

∣∣∣∣∣∣
∞

≤ Cγ0h4 + Ch2(γ2ε j∆t + γ0ᾱh2)
≤ Ch2(γ2ε j∆t + γ0(1 + ᾱ)h2). (4.19)

�

Theorem 6. Let u(ζ, τ) represent the exact solution and ū(ζ, τ) be the approximate solution. Then, the
uniform error estimate is given by∣∣∣∣∣∣u − ū

∣∣∣∣∣∣
∞
≤ C(h2(γ2ε j∆t + γ0(1 + ᾱ)h2) + ∆t2).

Proof. The convergence of the proposed method in the time direction is O(∆t2) as given in Lemma 1,
and from Theorem 5 the error estimate in the space direction is Ch2(γ2ε j∆t + γ0(1 + ᾱ)h2). Therefore,
combining the results from Lemma 1 and Theorem 5, the following error estimate is obtained:∣∣∣∣∣∣u − ū

∣∣∣∣∣∣
∞
≤ C(h2(γ2ε j∆t + γ0(1 + ᾱ)h2) + ∆t2). (4.20)

�

AIMS Mathematics Volume 9, Issue 4, 8192–8213.



8202

5. Results and discussions

The error analysis of any technique is incomplete if it does not consider the Eucledian and
supremum norms, also known as the L2-norm and L∞-norm, respectively. These norms are defined
as

|| u − ū ||2=

√√
n∑

i=0

u(ζi, τ)2 − ū(ζi, τ)2.

|| u − ū ||∞= max. | u(ζi, τ) − ū(ζi, τ) |, i = 0, 1, 2, . . . , n.

Problem 1. Consider the Fitzough-Nagumo equation

uτ = uζζ + u(1 − u)(u − µ), ∀(ζ, τ) ∈ (−10, 10) × (0, 6]. (5.1)

The boundary as well as initial conditions are given below:

u(−10, τ) = 0.5 + 0.5 × tanh
( 1

2
√

2
(−10 −

2µ − 1
√

2
τ)

)
,

u(10, τ) = 0.5 + 0.5 × tanh
( 1

2
√

2
(10 −

2µ − 1
√

2
τ)

)
,

u(ζ, 0) = 0.5 + 0.5 × tanh
( ζ

2
√

2

)
.

Problem 1 was solved using cubic Hermite splines with a = −10 and b = 10. The numerical
findings of the L2-norm and the L∞-norm have been calculated for µ = 0.25 and µ = −0.5, which is
presented in Table 2. The norms show the stability and the efficiency of the technique. In Tables 3
and 4, the absolute error is shown for µ = 0.25 and µ = −0.5 for varying number of node points. It is
clear from these tables that the absolute error varies from order 10−6 to 10−4. In Table 5, the numerical
values obtained from present technique are compared with the values given in [35]. The L∞-norm is
found to be better than the values given in the literature, and the L2-norm is found to be on par with
the L2-norm given in the literature, and at some points even better. The graphical representation of
the numerical solutions is visualized in Figures 2–5 for varying values of µ. It is observed from these
figures that the numerical values are bounded and lie between 0 and 1. From these tables and figures,
it is observed that these quantitative results show the efficiency and accuracy of the method.

Table 2. L2 and L∞ norms at µ = 0.25 and µ = −0.5 for Problem 1.

µ = 0.25 µ = −0.5
τ L2-norm L∞-norm L2-norm L∞-norm
0.2 6.53005×10−6 6.10156×10−5 2.45277×10−5 2.42908×10−4

0.6 1.46464×10−5 1.91197×10−4 2.39772×10−5 2.23646×10−4

0.8 1.88315×10−5 2.46652×10−4 2.40393×10−5 2.18534×10−4

1 2.10045×10−5 3.66614×10−4 2.37522×10−5 2.12365×10−4

3 3.12686×10−5 4.85899×10−4 3.86837×10−5 5.53539×10−4

6 3.51878×10−5 5.44749×10−4 5.13096×10−4 9.43100×10−3
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Table 3. Comparison of absolute error at µ = 0.25 and τ = 0.5 for different numbers of
elements for Problem 1.

ζ n=20 n=40 n=100 n=200 n=400
−8 2.420467×10−2 3.032328×10−3 4.816493×10−5 9.623057×10−5 1.519802×10−5

−6 3.805404×10−4 1.942463×10−5 4.888632×10−6 4.283628×10−6 4.157908×10−6

−4 7.190073×10−5 1.778285×10−5 1.505554×10−5 1.498958×10−5 1.498550×10−5

−2 3.583102×10−4 1.537630×10−5 4.005334×10−5 4.066483×10−5 4.070273×10−5

2 3.518331×10−4 5.601424×10−5 3.817221×10−5 3.772792×10−5 3.770037×10−5

4 2.669094×10−5 9.245578×10−6 1.320194×10−5 1.330002×10−5 1.330608×10−5

6 7.101890×10−4 3.316729×10−5 5.893619×10−6 4.357652×10−6 3.636630×10−6

Table 4. Comparison of absolute error at µ = −0.5 and τ = 0.5 for different numbers of
elements for Problem 1.

ζ n=20 n=40 n=100 n=200 n=400
−8 3.46995×10−2 4.31885×10−3 1.18035×10−4 1.37984×10−4 2.41337×10−5

−6 5.42797×10−4 4.09318×10−5 2.07135×10−5 1.98629×10−5 1.96841×10−5

−4 6.67514×10−5 6.80546×10−5 6.95134×10−5 6.95535×10−5 6.95561×10−5

−2 2.85835×10−4 1.45990×10−4 1.76459×10−4 1.77204×10−4 1.77250×10−4

2 2.95911×10−4 1.38367×10−4 1.30731×10−4 1.30538×10−4 1.30526×10−4

4 1.37342×10−5 3.88842×10−5 4.33501×10−5 4.34606×10−5 4.34674×10−5

6 6.26818×10−4 3.35472×10−5 1.32485×10−5 1.21421×10−5 1.16359×10−5

8 3.16242×10−2 5.11491×10−3 2.48175×10−4 8.23161×10−5 4.64385×10−5

Table 5. Comparison of the L2-norm and the L∞-norm at µ=0.75 for Problem 1.

[35] Cubic Hermite splines [35] Cubic Hermite splines
τ L2-norm L2-norm L∞ − norm L∞-norm
0.2 2.3012×10−6 1.0808×10−6 4.7416×10−5 1.9189×10−5

0.5 5.5695×10−6 3.5274×10−6 1.2312×10−4 5.6503×10−5

1 1.1864×10−5 1.0948×10−5 2.6261×10−4 1.9484×10−4

1.5 1.9400×10−5 3.6190×10−5 4.2096×10−4 5.2431×10−4

2 2.8162×10−5 2.7306×10−5 5.9999×10−4 5.3048×10−4

3 4.9735×10−5 6.9690×10−5 1.0324×10−3 9.9714×10−4

5 1.1395×10−4 1.1158×10−4 2.3020×10−3 1.9205×10−3
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Figure 2. 2D view of the numerical solution at µ = 0.25 for Problem 1.

Figure 3. Surface representation of the numerical solution at µ = 0.25 for Problem 1.
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Figure 4. 2D view of the numerical solution at µ = −0.5 for Problem 1.
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Figure 5. Surface representation of the numerical solution at µ = −0.5 for Problem 1.

Problem 2. Consider the variable order Fitzough-Nagumo equation

uτ = cos τ uζζ − cos τ uζ + 2 cos τ(u(1 − u)(u − µ)), ∀(ζ, τ) ∈ (−10, 10) × (0, 1], (5.2)

u(−10, τ) = 0.5µ + 0.5µ tanh(0.5µ(−10 − (3 − µ) sin τ)),

u(10, τ) = 0.5µ + 0.5µ tanh(0.5µ(10 − (3 − µ) sin τ)).

Initially,

u(ζ, 0) = 0.5µ + 0.5µ tanh(0.5µζ).

Problem 2 was solved using cubic Hermite splines as basis functions. To check the stability and
the efficiency of the technique, the numerical findings of the L2-norm and L∞-norm were calculated for
µ = 0.25 and µ = 0.05. The numerical values of the L2-norm and the L∞-norm are presented in Table 6.
It is observed that the L2-norm varies from 10−6 to 10−5, whereas the L∞-norm varies from 10−5 to 10−3.
In Tables 7 and 8, the absolute error is shown for µ = 0.25 and µ = 0.05 for varying number of node
points. It is observed that the absolute error stabilizes after 100 node points for µ = 0.25 and µ = 0.05.
In Table 9, the L2-norm and L∞-norm are compared to the values given in [35]. Both the L2-norm
and L∞-norm are found to be better than the values given in the literature. It is also observed that the
absolute error is reduced for small values of µ. The graphical representation of the numerical solution
is presented in Figures 6–9 for different values of µ. It is clear from these figures that u is bounded and
lies between 0 and 0.25.

Table 6. L2-norm and L∞ norm at µ = 0.25 and µ = 0.05 for Problem 2.

µ = 0.25 µ = 0.05
τ L2-norm L∞-norm L2-norm L∞-norm
0.2 7.99141×10−5 5.58252×10−4 6.09782×10−6 7.95415×10−5

0.4 7.80824×10−5 7.43978×10−4 5.60292×10−6 8.00388×10−5

0.6 7.89700×10−5 7.70075×10−4 1.19943×10−5 1.69741×10−4

0.8 8.83713×10−5 7.05602×10−4 1.71748×10−5 3.17626×10−4

1 9.50768×10−5 1.42997×10−3 1.92533×10−5 2.93372×10−4
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Table 7. Comparison of absolute error at µ = 0.25 and τ = 0.5 for different numbers of
elements for Problem 2.

ζ n=20 n=40 n=100 n=200 n=400
−8 3.56960×10−1 8.40339×10−2 1.84735×10−2 1.01369×10−3 4.19861×10−4

−6 2.71322×10−2 1.76316×10−2 6.73960×10−3 4.46380×10−4 3.73789×10−4

−4 2.11950×10−2 1.10186×10−3 1.70975×10−3 2.62175×10−4 2.59010×10−4

−2 2.46704×10−2 2.77489×10−3 2.77545×10−3 2.23101×10−4 2.23101×10−4

2 4.97110×10−3 4.97179×10−3 1.06710×10−3 1.06710×10−3 4.38632×10−4

4 5.34227×10−3 5.34505×10−3 1.77438×10−4 1.77435×10−4 1.77435×10−4

6 4.94204×10−3 4.96493×10−3 4.16657×10−4 4.16660×10−4 4.16660×10−4

8 3.40494×10−3 4.05882×10−3 6.38229×10−4 6.40161×10−4 1.80930×10−4

Table 8. Comparison of absolute error at µ = 0.05 and τ = 0.5 for different numbers of
elements for Problem 2.

ζ n=20 n=40 n=100 n=200 n=400
−8 3.71171×10−1 1.18063×10−2 2.34982×10−3 1.69686×10−3 9.16820×10−5

−6 1.15766×10−2 1.73286×10−3 1.04057×10−3 4.97002×10−4 2.65137×10−5

−4 1.49387×10−3 5.60174×10−4 4.02871×10−5 4.88264×10−5 1.61169×10−5

−2 1.16173×10−3 7.66383×10−5 7.72591×10−5 7.72621×10−5 1.53091×10−5

2 8.10909×10−5 8.08199×10−5 8.08200×10−5 8.08200×10−5 1.84049×10−5

4 7.97483×10−5 8.20047×10−5 8.20047×10−5 4.23380×10−5 4.23380×10−5

6 3.48375×10−5 8.27213×10−5 8.27595×10−5 4.04893×10−5 2.11177×10−5

8 1.33879×10−3 5.81959×10−5 8.22777×10−5 3.90138×10−5 2.23853×10−5

Table 9. Comparison of the L2-norm and the L∞-norm at µ=0.75 for Problem 2.

[35] Cubic Hermite splines [35] Cubic Hermite splines
τ L2-norm L2-norm L∞-norm L∞-norm
0.2 1.3122×10−6 2.1142×10−6 1.2350×10−5 3.0019×10−5

0.5 6.0995×10−6 4.8016×10−6 5.1986×10−5 8.6760×10−5

1 2.1213×10−5 2.1057×10−5 6.3283×10−4 3.7204×10−4

1.5 3.2340×10−5 2.0231×10−5 8.5383×10−4 3.3954×10−4
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Figure 6. 2D view of the numerical solution at µ = 0.25 for Problem 2.

Figure 7. Surface representation of the numerical solution at µ = 0.25 for Problem 2.
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Figure 9. Surface representation of the numerical solution at µ = 0.05 for Problem 2.

Problem 3. Consider the Newell-Whitehead-Segel equation

uτ = εuζζ + u − u3, ∀(ζ, τ) ∈ (0, 1) × (0, 2]. (5.3)

The boundary conditions can be taken as

u(0, τ) = −0.5 + 0.5 tanh(−0.75τ),

u(1, τ) = −0.5 + 0.5 tanh(0.3536 − 0.75τ).

The initial condition is
u(ζ, 0) = −0.5 + 0.5 tanh(0.3536ζ).

The above problem is solved using cubic Hermite splines. The absolute error obtained from the
cubic Hermite splines is compared with values given in [36] at different time periods in Tables 10–14.
It is observed that the values obtained from the cubic Hermite splines are better than those given in the
literature. In Table 15, the absolute error is shown for ε = 1 and τ = 0.5 for different node points. It
is observed that the absolute error stabilizes after 200 node points. The graphical representation of the
numerical solution is shown in Figures 10 and 11 for different values of τ. The 2D and 3D graphs show
that the absolute value of u is less than 1.

Table 10. Comparison of absolute error at τ = 0.1 for Problem 3.

ζ [36] (ADM) [36] (MQ) Cubic Hermite splines
−25 1.16440×10−11 2.92000×10−9 9.47831×10−10

−15 1.37206×10−8 3.43787×10−6 3.07688×10−9

25 4.83920×10−10 3.38887×10−9 8.42926×10−10

30 1.40960×10−11 9.72520×10−11 4.76281×10−9

Table 11. Comparison of absolute error at τ = 0.2 for Problem 3.

ζ [36] (ADM) [36] (MQ) Cubic Hermite splines
−25 8.82590×10−11 5.43320×10−9 5.3765×10−10

−15 1.03995×10−7 6.39620×10−6 2.8219×10−9

25 1.98915×10−9 7.32706×10−9 9.7918×10−10

30 5.79430×10−11 2.10500×10−10 1.2574×10−8
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Table 12. Comparison of absolute error at τ = 0.3 for Problem 3.

ζ [36] (ADM) [36] (MQ) Cubic Hermite splines
−25 2.86520×10−10 5.43180×10−9 6.26624×10−10

−15 3.37614×10−7 6.39128×10−6 2.31068×10−9

25 4.60456×10−9 7.32168×10−9 1.04420×10−9

30 1.34120×10−10 2.08880×10−10 2.55231×10−8

Table 13. Comparison of absolute error at τ = 0.4 for Problem 3.

ζ [36] (ADM) [36] (MQ) Cubic Hermite splines
−25 6.55230×10−10 5.43041×10−9 3.48943×10−9

−15 7.72060×10−7 6.38636×10−6 2.05489×10−9

25 8.43340×10−9 7.31631×10−9 9.50172×10−9

30 2.45660×10−10 2.07260×10−10 4.66049×10−8

Table 14. Comparison of absolute error at τ = 0.5 for Problem 3.

ζ [36] (ADM) [36] (MQ) Cubic Hermite splines
−25 1.45683×10−6 5.42902×10−9 8.09276×10−9

−15 1.23638×10−9 6.38144×10−6 1.57301×10−9

25 1.35958×10−8 7.31090×10−10 3.57346×10−8

30 3.96040×10−10 2.05640×10−10 7.88424×10−8

Table 15. Comparison of absolute error for ε = 1, τ = 0.5 for different number of elements
for Problem 3.

ζ n=20 n=40 n=100 n=200 n=400
−25 4.124052×10−2 3.071154×10−6 3.087868×10−8 9.088583×10−9 8.092759×10−9

−15 1.623276×10−3 8.594511×10−6 6.143898×10−6 2.501633×10−8 1.573009×10−9

15 6.569221×10−4 3.970126×10−4 5.117331×10−5 6.449049×10−8 6.246470×10−8

25 5.053591×10−4 4.519585×10−6 4.490637×10−7 5.625901×10−8 3.573463×10−8
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Figure 10. 2D view of the numerical solution at ε = 1 for Problem 3.
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Figure 11. Surface representation of the numerical solution at ε = 1 for Problem 3.

6. Conclusions

Orthogonal collocation with cubic Hermite splines was applied on non-linear reaction-diffusion
type equations. Two equations of Fitzough-Nagumo type and one of Newell-Whitehead-Segel type
were solved numerically using cubic Hermite splines with the CN scheme. It is observed that the
proposed algorithm is applicable to non-linear reaction-diffusion equations with both variable and
constant coefficients. The absolute error is found to be of order 10−4, which proves the efficiency
of the proposed algorithm. The proposed technique can also be applied on higher-dimensional linear
as well as non-linear problems. The proposed technique can also be applied to fractional-order partial
differential equations.
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