In this paper, we consider a Neumann problem of Kirchhoff type equation
$ \begin{equation*} \begin{cases} -\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u = Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \frac{\partial u}{\partial v} = 0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} $
where $ \Omega $ $ \subset $ $ \mathbb{R}^3 $ is a bounded domain with a smooth boundary, $ a, b > 0 $, $ 1 < q < 2 $, $ \lambda > 0 $ is a real parameter, $ Q(x) $ and $ P(x) $ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
Citation: Jun Lei, Hongmin Suo. Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth[J]. AIMS Mathematics, 2021, 6(4): 3821-3837. doi: 10.3934/math.2021227
In this paper, we consider a Neumann problem of Kirchhoff type equation
$ \begin{equation*} \begin{cases} -\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u = Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \frac{\partial u}{\partial v} = 0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} $
where $ \Omega $ $ \subset $ $ \mathbb{R}^3 $ is a bounded domain with a smooth boundary, $ a, b > 0 $, $ 1 < q < 2 $, $ \lambda > 0 $ is a real parameter, $ Q(x) $ and $ P(x) $ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
[1] | C. O. Alves, F. J. S. A. Corr$\hat{e}$a, G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equations Appl., 2 (2010), 409-417. |
[2] | C. O. Alves, F. J. S. A. Corr$\hat{e}$a, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008 |
[3] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7 |
[4] | H. Br$\acute{e}$zis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405 |
[5] | X. F. Cao, J. X. Xu, J. Wang, Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in $\mathbb{R}^3$, Electron. J. Differ. Equations, 301 (2016), 1-16. |
[6] | J. Chabrowski, The critical Neumann problem for semilinear elliptic equations with concave perturbations, Ric. Mat., 56 (2007), 297-319. doi: 10.1007/s11587-007-0018-1 |
[7] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. |
[8] | H. N. Fan, Existence of ground state solutions for Kirchhoff-type problems involving critical Sobolev exponents, Math. Methods Appl. Sci., 41 (2018), 371-385. doi: 10.1002/mma.4620 |
[9] | G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. doi: 10.1016/j.jmaa.2012.12.053 |
[10] | X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equations, 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035 |
[11] | X. M. He, W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat., 193 (2014), 473-500. doi: 10.1007/s10231-012-0286-6 |
[12] | Y. He, G. B. Li, S. J. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 441-468. |
[13] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[14] | C. Y. Lei, C. M. Chu, H. M. Suo, C. L. Tang, On Kirchhoff type problems involving critical and singular nonlinearities, Ann. Polonici Mathematici, 114 (2015), 269-291. doi: 10.4064/ap114-3-5 |
[15] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equations, 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011 |
[16] | Q. Q. Li, K. M. Teng, X. Wu, Ground states for Kirchhoff-type equations with critical growth, Commun. Pure Appl. Anal., 17 (2018), 2623-2638. doi: 10.3934/cpaa.2018124 |
[17] | J. F. Liao, P. Zhang, X. P. Wu, Existence of positive solutions for Kirchhoff problems, Electron. J. Differ. Equations, 280 (2015), 1-12. |
[18] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. doi: 10.1016/S0304-0208(08)70870-3 |
[19] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Henri Poincare (C) Nonlinear Anal., 2 (1984), 109-145. |
[20] | Z. S. Liu, Y. J. Lou, J. J. Zhang, A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity. Available from: https://arXiv.org/abs/1812.09240v2. |
[21] | Z. S. Liu, S. J. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2015), 747-769. doi: 10.1007/s00033-014-0431-8 |
[22] | Z. S. Liu, S. J. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287. doi: 10.1016/j.jmaa.2015.01.044 |
[23] | D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differ. Equations, 257 (2014), 1168-1193. doi: 10.1016/j.jde.2014.05.002 |
[24] | L. J. Shen, X. H. Yao, Multiple positive solutions for a class of Kirchhoff type problems involving general critical growth. Available from: https://arXiv.org/abs/1607.01923v1. |
[25] | J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equations, 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023 |
[26] | X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differ. Equations, 93 (1993), 283-310. |
[27] | X. Wu, Existence of nontrivial solutions and high energy solutions for Schr$\ddot{\mathrm{o}}$dinger-Kirchhoff-type equations in $\mathbb{R}^N$, Nonlinear Anal.: Real World Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023 |
[28] | Q. L. Xie, X. P. Wu, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[29] | W. Xie, H. Chen, H. Shi, Multiplicity of positive solutions for Schr$\ddot{\mathrm{o}}$dinger-Poisson systems with a critical nonlinearity in $\mathbb{R}^3$, Bull. Malays. Mat. Sci. Soc., 3 (2018), 1-24. |
[30] | W. H. Xie, H. B. Chen, Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions, J. Math. Anal. Appl., 479 (2019), 135-161. doi: 10.1016/j.jmaa.2019.06.020 |
[31] | L. P. Xu, H. B. Chen, Sign-changing solutions to Schr$\ddot{\mathrm{o}}$dinger-Kirchhoff-type equations with critical exponent, Adv. Differ. Equations, 121 (2016), 1-14. |
[32] | L. Yang, Z. S. Liu, Z. S. Ouyang, Multiplicity results for the Kirchhoff type equations with critical growth, Appl. Math. Lett., 63 (2017), 118-123. doi: 10.1016/j.aml.2016.07.029 |
[33] | J. Zhang, W. M. Zou, Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem, Z. Angew. Math. Phys., 68 (2017), 1-27. doi: 10.1007/s00033-016-0745-9 |
[34] | J. Zhang, The critical Neumann problem of Kirchhoff type, Appl. Math. Comput., 274 (2016), 519-530. |