Research article Special Issues

Asymptotic behavior of ground states for a fractional Choquard equation with critical growth

  • Received: 09 December 2020 Accepted: 17 January 2021 Published: 29 January 2021
  • MSC : 35J50, 35Q40, 58E05

  • In this paper, we are concerned with the following fractional Choquard equation with critical growth:

    $ (-\Delta)^s u+\lambda V(x)u = (|x|^{-\mu} \ast F(u))f(u)+|u|^{2^*_s-2}u \; \hbox{in}\; \mathbb{R}^N, $

    where $ s\in (0, 1) $, $ N > 2s $, $ \mu\in (0, N) $, $ 2^*_s = \frac{2N}{N-2s} $ is the fractional critical exponent, $ V $ is a steep well potential, $ F(t) = \int_0^tf(s)ds $. Under some assumptions on $ f $, the existence and asymptotic behavior of the positive ground states are established. In particular, if $ f(u) = |u|^{p-2}u $, we obtain the range of $ p $ when the equation has the positive ground states for three cases $ 2s < N < 4s $ or $ N = 4s $ or $ N > 4s $.

    Citation: Xianyong Yang, Qing Miao. Asymptotic behavior of ground states for a fractional Choquard equation with critical growth[J]. AIMS Mathematics, 2021, 6(4): 3838-3856. doi: 10.3934/math.2021228

    Related Papers:

  • In this paper, we are concerned with the following fractional Choquard equation with critical growth:

    $ (-\Delta)^s u+\lambda V(x)u = (|x|^{-\mu} \ast F(u))f(u)+|u|^{2^*_s-2}u \; \hbox{in}\; \mathbb{R}^N, $

    where $ s\in (0, 1) $, $ N > 2s $, $ \mu\in (0, N) $, $ 2^*_s = \frac{2N}{N-2s} $ is the fractional critical exponent, $ V $ is a steep well potential, $ F(t) = \int_0^tf(s)ds $. Under some assumptions on $ f $, the existence and asymptotic behavior of the positive ground states are established. In particular, if $ f(u) = |u|^{p-2}u $, we obtain the range of $ p $ when the equation has the positive ground states for three cases $ 2s < N < 4s $ or $ N = 4s $ or $ N > 4s $.



    加载中


    [1] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
    [2] B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. doi: 10.1016/j.anihpc.2014.04.003
    [3] T. Bartsch, A. Pankov, Z. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569. doi: 10.1142/S0219199701000494
    [4] T. Bartsch, Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26. doi: 10.3934/dcds.2013.33.7
    [5] T. Bartsch, Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${R}^N$, Commun. Part. Diff. Eq., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149
    [6] T. Bartsch, Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366-384. doi: 10.1007/PL00001511
    [7] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, P. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175
    [8] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025
    [9] L. Caffarelli, Non-local diffusions, drifts and games, In: Nonlinear Partial Differential Equations, Heidelberg: Springer, 2012, 37-52.
    [10] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Differ. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306
    [11] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479
    [12] S. Chen, Y. Li, Z. Yang, Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent, RACSAM, 114 (2020), 33-35. doi: 10.1007/s13398-019-00768-4
    [13] M. Clapp, Y. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592-605. doi: 10.1007/s00033-004-1084-9
    [14] P. d'Avenia, G. Siciliano, M. Squassina, Existence results for a doubly nonlocal equation, São Paulo J. Math. Sci., 9 (2015), 311-324. doi: 10.1007/s40863-015-0023-3
    [15] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [16] S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\Bbb{R}^n$, Pisa: Edizioni della Normale, 2017.
    [17] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
    [18] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.camwa.2017.12.025
    [19] Z. Gao, X. Tang, S. Chen, On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger-Choquard equations, Z. Angew. Math. Phys., 69 (2018), 122. doi: 10.1007/s00033-018-1016-8
    [20] L. Guo, T. Hu, Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well, Math. Method. Appl. Sci., 41 (2018), 1145-1161. doi: 10.1002/mma.4653
    [21] C. Ledesma, Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well, Commun. Pure Appl. Anal., 15 (2016), 535-547. doi: 10.3934/cpaa.2016.15.535
    [22] E. H. Lieb, M. Loss, Analysis, Providence: American Mathematical Society, 2001.
    [23] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007
    [24] T. Mukherjee, K. Sreenadh, Fractional Choquard equation with critical nonlinearities, NoDEA Nonlinear Diff., 24 (2017), 63. doi: 10.1007/s00030-017-0487-1
    [25] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, T. Am. Math. Soc., 367 (2015), 67-102.
    [26] L. Shao, H. Chen, Ground states solutions for modified fourth-order elliptic systems with steep well potential, J. Nonlinear Sci. Appl., 11 (2018), 323-334. doi: 10.22436/jnsa.011.03.01
    [27] Z. Shen, F. Gao, M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst., 38 (2018), 3567-3593. doi: 10.3934/dcds.2018151
    [28] F. Tao, X. Wu, Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. Real, 35 (2017), 158-174. doi: 10.1016/j.nonrwa.2016.10.007
    [29] M. Willem, Minimax theorems, Boston, MA: Birkhäuser Boston, Inc, 1996.
    [30] Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth, Adv. Nonlinear Anal., 10 (2021), 732-774.
    [31] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2283) PDF downloads(172) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog