This paper proposes a numerical scheme for the Allen-Cahn equation that represents a phenomenological model for anti-phase domain coarsening in a binary mixture. In order to obtain a high order discretization in space, we adopt the barycentric interpolation collocation method. The semi-discretized scheme in space is shown to be consistent. The second-order Crank-Nicolson scheme is used for temporal discretization and the simple iteration method is adopted for nonlinear term. Corresponding algebraic system is derived. Numerical examples are demonstrated to validate the efficiency of the proposed method.
Citation: Yangfang Deng, Zhifeng Weng. Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J]. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229
This paper proposes a numerical scheme for the Allen-Cahn equation that represents a phenomenological model for anti-phase domain coarsening in a binary mixture. In order to obtain a high order discretization in space, we adopt the barycentric interpolation collocation method. The semi-discretized scheme in space is shown to be consistent. The second-order Crank-Nicolson scheme is used for temporal discretization and the simple iteration method is adopted for nonlinear term. Corresponding algebraic system is derived. Numerical examples are demonstrated to validate the efficiency of the proposed method.
[1] | S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. |
[2] | A. A. Wheeler, W. J. Boettinger, G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A., 45 (1992), 7424-7439. |
[3] | M. Beneŝ, V. Chalupecky, K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math., 51 (2004), 187-205. |
[4] | X. B. Feng, A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flaws, Numer. Math., 94 (2003), 33-65. |
[5] | D. S. Cohen, J. D. Murray, A generalized diffusion model for growth and dispersal in a population, J. Math. Biol., 12 (1981), 237-249. |
[6] | L. Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113-140. |
[7] | X. F. Chen, C. Elliott, A. Gardiner, J. J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation, Appl. Anal., 69 (1998), 47-56. |
[8] | S. Y. Zhai, X. L. Feng, Y. N. He, Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method, Comput. Phys. Commun., 185 (2014), 2449-2455. |
[9] | T. L. Hou, T. Tang, J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72 (2017), 1214-1231. |
[10] | X. B. Feng, Y. K. Li, Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow, IMA J. Numer. Anal., 35 (2014), 1622-1651. |
[11] | C. Y. Li, Y. Q. Huang, N. Y. Yi, An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation, J. Comput. Appl. Math., 353 (2019), 38-48. |
[12] | Z. F. Weng, L. K. Tang, Analysis of the operator splitting scheme for the Allen-Cahn equation, Numer. Heat. TR. B-Fund., 70 (2016), 472-483. |
[13] | D. Jeong, J. Kim, An explicit hybrid finite difference scheme for the Allen-Cahn equation, J. Comput. Appl. Math., 340 (2018), 247-255. |
[14] | Y. Q. Huang, W. Yang, H. Wang, J. T. Cui, Adaptive operator splitting finite element method for Allen-Cahn equation, Numer. Methods Partial Differ. Eq., 35 (2019), 1290-1300. |
[15] | J. Berrut, L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), 501-517. |
[16] | J. P. Berrut, G. Klein, Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95-107. |
[17] | H. Y. Liu, J. Huang, Y. B. Pan, J. Zhang, Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional fredholm integral equations, J. Comput. Appl. Math., 327 (2018), 141-154. |
[18] | M. Li, C. M. Huang, W. Y. Ming, Barycentric rational collocation methods for Volterra integral equations with weakly singular kernels, Comput. Appl. Math., 38 (2019), 1-15. |
[19] | W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13-19. |
[20] | O. Oruc, Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation, Comput. Math. Appl., 79 (2020), 3272-3288. |
[21] | S. C. Yi, L. Q. Yao, A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis, Numer. Methods Partial Differ. Eq., 35 (2019), 1694-1716. |