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1. Introduction

In this paper, we consider the following Allen-Cahn equation
∂u(x, t)
∂t

− ∆u(x, t) +
1
ε2 f (u(x, t)) = 0, (x, t) ∈ Ω × (0,T ],

u(x, 0) = u0(x), x ∈ Ω
(1.1)

with the Dirichlet boundary condition

u(x, t) = φ(x, t), x ∈ ∂Ω, t ∈ (0,T ]. (1.2)

where Ω is a bounded domain in Rd (d = 1, 2). The positive parameter ε representing generally the

interfacial width is a very small constant and the reaction term f (u) = F
′

(u) with F(u) =
1
4

(u2 − 1)2.
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The function u(x, t) can be viewed as the difference between the concentrations of the two components
of the mixture or be defined as the order parameter that indicates the local state of the whole system.
For instance, u = 1 and u = −1 stand for two different phases. It is well known that the Allen-Cahn
equation possesses energy-decay property associating with the following total free energy functional

E(u(t)) =

∫
Ω

1
ε2 F(u) +

1
2
|∇u|2dx. (1.3)

In fact, taking the inner product for equation (1.1) with ut, we can obtain

(ut, ut) +
1
ε2 (u3 − u, ut) + (∇u,∇ut) = 0.

The derivative of the energy E(u(t)) with respect to t gives

dE(u(t))
dt

=

∫
Ω

1
ε2 (u3 − u)ut + ∇u∇utdx = −(ut, ut) ≤ 0,

which implys the total energy is decreasing in time, namely

E(u(t2)) ≤ E(u(t1)), ∀t1 < t2 ∈ (0,T ]. (1.4)

The Allen-Cahn equation introduced by Allen and Cahn [1] in 1979 is a kind of non-homogeneous
semi-linear poisson equation, which often occurs in convection diffusion equations in computational
fluid dynamics or reaction-diffusion problems in material science. Hitherto, the Allen-Cahn equation
has been widely used to model mathematically in crystal growth [2], image analysis [3] and average
curvature-flow rate [4]. In addition, Allen-Cahn equation can also be used to describe competition
of biological populations and phenomenon of exclusion [5]. It has become a basic model to study
interfacial dynamics and phase transitions in material science [6]. However, the analytical solutions of
the phase-field models can not be obtained so that it is greatly necessary and significant to develope
stable, efficient and highly accurate numerical methods.

During the past two decades, enormous works have been devoted to numerical simulations and
numerical analysis for the Allen-Cahn equation such as finite difference [7–9], finite element [10, 11],
spectral method [12]. Zhai et al. in [8] proposed a novel linearized high-order compact difference
method for Allen-Cahn equation with different boundary conditions. Hou et al. presented numerical
analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations and
proved that the second order temporal discretization scheme preserves the discrete maximum principle
in [9]. Feng and Li [10] developed two fully discrete interior penalty discontinuous Galerkin scheme
for Allen-Cahn equation. Li et al. [11] introduced an unconditionally energy stable finite element
method for Allen-Cahn equation. But the scheme is only second-order accurate in both space and time.
Weng and Tang [12] presented two unconditionally stable second-order operator splitting approaches
based on Fourier spectral for solving the Allen-Cahn equation. In addition, the operator splitting
method combined with the finite difference method or finite element method for Allen-Cahn equation
have also been considered in [13, 14].

Most of above-mentioned works depend on the mesh generation to solve differential equations,
which causes some difficulties especially for high dimension problems with irregular domains. In
recent years, meshless methods have captured attention of scholars due to it’s advantage of meshless
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and ability of treating irregular domains. As a novel meshless method , barycentric interpolation
method is a good choice for dealing with polynomial interpolations since it is accurate highly, fast,
stable and easy on program implementation. Barycentric interpolation method include barycentric
Lagrange interpolation and barycentric rational interpolation, both of which can be written the unified
formula of barycentric interpolation. The weight functions become extremely big when the nodes are
of uniform distribution, which leads to the Runge phenomenon and ruins the merits of the barycentric
Lagrange interpolation. Luckily, if the nodes obey the density proportion (1 − x2)−

1
2 such as the

families of Chebyshev points that is the simplest clustered point sets, the barycentric Lagrange
interpolation has a good numerical stability. Barycentric interpolation also can effecively avoid the
accumulated errors caused by difference scheme. Readers can refer to [15, 16] for detailed
introduction and derivation of the barycentric interpolation. The collocation method based on
barycentric interpolation was lately extended to solve various integral equations and partial
differential equations including high-dimensional Fredholm integral equation of the second kind [17],
Volterra integral equations with weakly singular kernels [18], nonlinear parabolic equations [19] and
2D viscoelastic wave equation [20].

To our knowledge, the works of the error analysis for barycentric interpolation collocation method
are comparatively sparse. Recently, Yi and Yao in [21] put forward a steady barycentric Lagrange
interpolation method and presented error analysis of system for solving the time-fractional telegraph
equation. Based on the above works, we focus on a fully discrete scheme for the Allen-Cahn equation,
which is a second-order Crank-Nicolson scheme in time combined with the barycentric interpolation
collocation method in space. Moreover, we will give consistency analysis of the semi-discretized
scheme in space.

The remainder of the paper is structured as follows: In section 2, the barycentric interpolation
collocation method is introduced. Semi-discretized scheme in space and corresponding consistency
analysis are carried out in detail for the Allen-Cahn equation in section 3. In section 4, fully discrete
scheme based on Crank-Nicolson scheme is presented. Nmerical examples test the accuracy and
efficiency of proposed algorithm in section 5 and some conclusions are given in section 6.

2. Barycentric interpolation collocation method

2.1. Barycentric Lagrange interpolation with the Chebyshev points

Suppose n + 1 distinct interpolation nodes x j be given, together with corresponding a set of real
numbers y j ( j = 0, 1, . . . , n). Let p(x) denotes the polynomial of degree at most n, satisfying p(x j) = y j

( j = 0, 1, . . . , n). As we all known, such polynomial p(x) is unique and can be written in Lagrange
form as

p(x) =

n∑
j=0

L j(x)y j, L j(x) =

n∏
i=0,i, j

(x − xi)

n∏
i=0,i, j

(
x j − xi

) , j = 0, 1, · · · , n, (2.1)

where L j(x) is the basis function in Lagrange interpolation, which possesses the following properties

L j (xi) = δ ji =

{
1, j = i
0, j , i

, (i, j = 0, 1, · · · , n) (2.2)
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and
n∑

j=0

L j(x) = 1. (2.3)

Let
l(x) = (x − x0)(x − x1) . . . (x − xn). (2.4)

Defining the barycentric weights by

ω j =
1

n∏
i=0,i, j

(
x j − xi

) , j = 0, 1, · · · , n, (2.5)

the L j(x) can be expressed as

L j(x) = l(x)
ω j

x − x j
, j = 0, 1, · · · , n. (2.6)

Inserting Eq (2.6) into Eq (2.1), we get

p(x) = l(x)
n∑

j=0

ω j

x − x j
y j. (2.7)

Combining Eq (2.3) with Eq (2.6), we have the following identical equation

1 = l(x)
n∑

j=0

ω j

x − x j
. (2.8)

Dividing Eq (2.8) by Eq (2.7) and cancelling the common factor l(x), the barycentric Lagrange
interpolation formula for p(x) can be obtained

p(x) =

n∑
j=0

ω j

x − x j
y j

n∑
j=0

ω j

x − x j

:=
n∑

j=0

γ j(x)y j. (2.9)

In the paper, we choose the Chebyshev points given by

x j = cos(
j
n
π), j = 0, 1, · · · , n, (2.10)

which will ensure that above polynomial interpolation has good numerical stability.

2.2. Barycentric rational interpolation

The rational function interpolation based on the idea of mixed function can effectively overcome
the instability of interpolation.

Give n + 1 distinct interpolation nodes x j equipped with corresponding numbers y j ( j = 0, 1, . . . , n).
Choose a integer d (0 ≤ d ≤ n) and let pi(x) denotes the polynomial of degree at most d interpolating
d + 1 point pairs (xi, yi), (xi+1, yi+1), . . . , (xi+d, yi+d) for each i = 0, 1, . . . , n − d. Then, we set
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r(x) =

n−d∑
i=0
λi(x)pi(x)

n−d∑
i=0
λi(x)

, (2.11)

where

λi(x) =
(−1)i

(x − xi) · · · (x − xi+d)
. (2.12)

Obviously, rational function r(x) satisfy r(xi) = yi (i = 0, 1, . . . , n). In order to obtain barycentric
interpolation form of Eq (2.11), we write pi(x) in Lagrange interpolation

pi(x) =

i+d∑
k=i

i+d∏
j=i, j,k

(
x − x j

)
i+d∏

j=i, j,k

(
xk − x j

)yk. (2.13)

Insert Eq (2.13) into numerator of Eq (2.11), we have

n−d∑
i=0

λi(x)pi(x) =

n∑
k=0

ωk

x − xk
yk (2.14)

with interpolation weight ωk =
∑

i∈Jk

(−1)i
i+d∏

j=i, j,k

1(
xk − x j

) , where Jk = {i ∈ I : k − d ≤ i ≤ k} represents

index set, I = {0, 1, . . . , n}.
Noticing the identical equation

1 =

i+d∑
k=i

i+d∏
j=i, j,k

(
x − x j

)
i+d∏

j=i, j,k

(
xk − x j

) , (2.15)

we thus get
n−d∑
i=0

λi(x) =

n−d∑
i=0

λi(x) · 1 =

n∑
k=0

ωk

x − xk
. (2.16)

Combining Eqs (2.11), (2.14) and (2.16), the barycentric rational interpolation formula for r(x) can
be obtained

r(x) =

n∑
j=0

ω j

x − x j
y j

n∑
j=0

ω j

x − x j

:=
n∑

j=0

γ j(x)y j. (2.17)

2.3. Differential matrix

The derivative of p(x) defined as Eq (2.9) with respect to x as

p(v)(xi) =
dv p(xi)

dxv =

n∑
j=0

γ(v)
j (xi)y j =

n∑
j=0

D(v)
i j y j, v = 1, 2, · · · . (2.18)
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The first and second order differentiation matrices can be obtained by the following formula [15]
D(1)

i j = γ′j(xi) =
ω j/ωi

xi − x j
, j , i

D(1)
ii = −

n∑
j=0, j,i

D(1)
i j

, (2.19)


D(2)

i j = γ′′j (xi) = −2
ω j/ωi

xi − x j

( ∑
k,i

ωk/ωi

xi − xk
+

1
xi − x j

)
, j , i

D(2)
ii = −

n∑
j=0, j,i

D(2)
i j

. (2.20)

By mathematical induction, we have the following v-order differential matrix
D(v)

i j = v
(
D(v−1)

ii D(1)
i j −

D(v−1)
i j

xi − x j

)
, j , i

D(v)
ii = −

n∑
j=0, j,i

D(v)
i j

. (2.21)

3. Semi-discretized system and consistency analysis

3.1. Semi-discretized scheme based on barycentric interpolation collocation method

Choose a rectangular domain Ω = [a, b] × [c, d]. Partition respectively the interval [a, b], [c, d] into
M + 1, N + 1 distinct Chebyshev nodes: a = x0 < x1 < . . . < xM = b, c = y0 < y1 < . . . < yN = d.
Denoting u(xi, y, t) = ui(y, t), i = 0, 1, . . . ,M, and fixing variable y, the unknown function u(x, y, t) can
be written in barycentric interpolation form

u(x, y, t) =

M∑
l=0

γl(x)ul(y, t), (3.1)

where γl(x) is the basis function in barycentric interpolation on the direction of x.
Substituting Eq (3.1) into Eq (1.1) and making Eq (1.1) be identical at the nodes xi, i = 0, . . . ,M,

we have

M∑
l=0

γl(xi)
∂ul(y, t)
∂t

−

M∑
l=0

γ′′l (xi)ul(y, t) −
M∑

l=0

γl(xi)
∂2ul(y, t)
∂y2 +

1
ε2 f (

M∑
l=0

γl(xi)ul(y, t)) = 0. (3.2)

where γ′′l (xi) =
d2γl(xi)

dx2 = C(2)
il .

Equation (3.2) can be written in matrix form, namely
∂u0(y, t)
∂t
...

∂uM(y, t)
∂t

 −


C(2)
00 . . . C(2)

0M
...

...

C(2)
M0 . . . C(2)

MM




u0(y, t)
...

uM(y, t)

 −

∂2u0(y, t)
∂y2

...
∂2uM(y, t)

∂y2


+

1
ε2


f (u0(y, t))

...

f (uM(y, t))

 = 0. (3.3)
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Denote ui(y j, t) = ui j(t). Similarly, ui(y, t) can be written in barycentric interpolation form

ui(y, t) =

N∑
q=0

βq(y)uiq(t). (3.4)

where βq(y) is the basis function in barycentric interpolation on the direction of y.
Inserting Eq (3.4) into Eq (3.3) and making Eq (3.3) be identical at the nodes y j, j = 0, 1, . . . ,N ,

we get the following ODE system

N∑
q=0

βq(y j)
du0q(t)

dt
...

N∑
q=0

βq(y j)
duMq(t)

dt


−


C(2)

00 . . . C(2)
0M

...
...

C(2)
M0 . . . C(2)

MM




N∑
q=0

βq(y j)u0q(t)

...
N∑

q=0
βq(y j)uMq(t)



−



N∑
q=0

β′′q (y j)u0q(t)

...
N∑

q=0
β′′q (y j)uMq(t)


+

1
ε2


f
(

N∑
q=0

βq(y j)u0q(t)
)

...

f
(

N∑
q=0

βq(y j)uMq(t)
)


= 0.

(3.5)

where β′′q (y j) =
d2βq(y j)

dy2 = D(2)
jq .

Introduce the following notations

ui(t) = [ui0(t), ui1(t), . . . , uiN(t)]T ,

U = [uT
0 (t),uT

1 (t), . . . ,uT
M(t)]T = [u00(t), . . . , u0N(t), u10(t), . . . , u1N(t), . . . , uM0(t), . . . , uMN(t)]T .

Equation (3.5) can be rewritten in the following matrix form

dU
dt
− (C(2) ⊗ IN)U − (IM ⊗ D(2))U+

1
ε2 f(U) = 0, (3.6)

where the sign ⊗ represents the Kronecker product of the matrix, C(2) and D(2) stand for second order
differential matrix on nodes x0, x1, . . . , xM and on nodes y0, y1, . . . , yN , severally. IM and IN being the
identity matrix of M + 1, N + 1 order, respectively.

3.2. Consistency analysis for the semi-discretized scheme

In this part, we present consistency estimates of the semi-discretized system (3.6) with the
collocation method. Let p(x) is the Lagrange interpolation function approximating u(x). According to
interpolation remainder theorem, we have

e(x) := u(x) − p(x) =
u(m+1)(ξi)
(m + 1)!

m∏
i=0

(x − xi). (3.7)

Estimates of (3.7) are considered by the following Lemma that have been proved in Yi [21].
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Lemma 1. (see Yi [21]) If u(x) ∈ Cm+1([a, b]), then the following estimates for functional e(x) defined
as (3.7) hold 

|e(x)| ≤ C1‖ u(m+1) ‖∞

(
elx

2m

)m

,

|e′(x)| ≤ C∗1‖ u(m+1) ‖∞

(
elx

2(m − 1)

)m−1

,

|e′′(x)| ≤ C∗∗1 ‖ u(m+1) ‖∞

(
elx

2(m − 2)

)m−2

,

(3.8)

where C1, C∗1 and C∗∗1 are constant independent of x, e is natural logarithm and lx represents the
length of the interval [a, b].

Let p(x, y) is Lagrange interpolation function of u(x, y) satisfying p(xm, yn) = u(xm, yn). Defining
the error function as

e(x, y) := u(x, y) − p(xm, yn)
= u(x, y) − p(xm, y) + p(xm, y) − p(xm, yn)

=
∂(m+1)

x u(ξi, y)
(m + 1)!

m∏
i=0

(x − xi) +
∂(n+1)

y u(xm, ξ j)
(n + 1)!

n∏
j=0

(y − y j)
, (3.9)

we have the following results based on the Lemma 1.

Theorem 1. If u ∈ Cm̄+1([a, b]) × [c, d]), where m̄ = max{m, n}. Then the following estimates for
functional e(x, y) defined as (3.9) hold

|e(x, y)| ≤‖ u(m̄+1) ‖∞

C1

(
elx

2M

)M

+ C2

(
ely

2N

)N , (3.10)

where ly represents the length of the interval [c, d]. Similarly, we get

|ex(x, y)| ≤ C∗1 ‖ ∂
(m+1)
x u‖∞

(
elx

2(M − 1)

)M−1

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ely

2N

)N

,

|exx(x, y)| ≤ C∗∗1 ‖ ∂
(m+1)
x u‖∞

(
elx

2(M − 2)

)M−2

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ely

2N

)N

,∣∣∣ey(x, y)
∣∣∣ ≤ C1 ‖ ∂

(m+1)
x u‖∞

(
elx

2M

)M

+ C∗2 ‖ ∂
(n+1)
y u‖∞

(
ely

2(N − 1)

)N−1

,∣∣∣eyy(x, y)
∣∣∣ ≤ C1‖∂

(m+1)
x u‖∞

(
elx

2M

)M

+ C∗∗2 ‖ ∂
(n+1)
y u‖∞

(
ely

2(N − 2)

)N−2

.

(3.11)

Set u(xm, yn, t) be the numerical solution of u(x, y, t), then we have

Πu(xm, yn, t) = 0 (3.12)

and
lim

m,n→∞
Πu(xm, yn, t) = 0, (3.13)

where Π is differential operator.
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Theorem 2. If u ∈ C0([0,T ]),Cm̄+1([a, b)×[c, d]), where m̄ = max{m, n}, let u(xm, yn, t) : Πu(xm, yn, t) =

0 and assume that f (u) satisfies the Lipschitz condition, we have

|u(x, y, t) − u(xm, yn, t)| ≤ C∗∗1 ‖ ∂
(m+1)
x u‖∞

(
elx

2(M − 2)

)M−2

+ C∗∗2 ‖ ∂
(n+1)
y u‖∞

(
ely

2(N − 2)

)N−2

. (3.14)

Proof. Following (1.1) and (3.12), we get

Πu(x, y, t) − Πu(xm, yn, t) = ut(x, y, t) − uxx(x, y, t) − uyy(x, y, t) + f (u(x, y, t))
− [ut(xm, yn, t) − uxx(xm, yn, t) − uyy(xm, yn, t) + f (u(xm, yn, t))]
= ut(x, y, t) − ut(xm, yn, t) + uxx(xm, yn, t) − uxx(x, y, t)
+ uyy(xm, yn, t) − uyy(x, y, t) + f (u(x, y, t)) − f (u(xm, yn, t))
:= R1 + R2 + R3 + R4,

(3.15)

where
R1 = ut(x, y, t) − ut(xm, yn, t),

R2 = uxx(xm, yn, t) − uxx(x, y, t),

R3 = uyy(xm, yn, t) − uyy(x, y, t),

R4 = f (u(x, y, t)) − f (u(xm, yn, t)).

For R1, we have

R1 = ut(x, y, t) − ut(xm, yn, t)
= ut(x, y, t) − ut(xm, y, t) + ut(xm, y, t) − ut(xm, yn, t)

=
∂(m+1)

x u(ξi, y, t)
(m + 1)!

m∏
i=0

(x − xi) +
∂(n+1)

y u(xm, ξ j, t)
(n + 1)!

n∏
j=0

(y − y j)

= et(xm, y, t) + et(xm, yn, t).

(3.16)

Applying Theorem 1, we obtain

|R1| = |et(xm, y, t) + et(xm, yn, t)|

≤ C1 ‖ ∂
(m+1)
x u‖∞

(
elx

2M

)M

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ely

2N

)N

.
(3.17)

Analogously, we estimate R2 and R3 as

AIMS Mathematics Volume 6, Issue 4, 3857–3873.



3866

|R2| = |exx(xm, y, t) + exx(xm, yn, t)|

≤ C∗∗1 ‖ ∂
(m+1)
x u‖∞

(
elx

2(M − 2)

)M−2

+ C2 ‖ ∂
(n+1)
y u‖∞

(
ely

2N

)N

,
(3.18)

|R3| =
∣∣∣eyy(xm, y, t) + eyy(xm, yn, t)

∣∣∣
≤ C1 ‖ ∂

(m+1)
x u‖∞

(
elx

2M

)M

+ C∗∗2 ‖ ∂
(n+1)
y u‖∞

(
ely

2(N − 2)

)N−2

.
(3.19)

For the term R4, we have

|R4| = | f (u(x, y, t)) − f (u(xm, yn, t))|
≤ C |u(x, y, t) − u(xm, yn, t)|

≤ C ‖ ∂(m+1)
x u‖∞

(
elx

2M

)M

+ C ‖ ∂(n+1)
y u‖∞

(
ely

2N

)N

.

(3.20)

Substituting (3.17)–(3.20) into (3.15), this completes the proof.
From Theorem 2, we can find that the order of the difference operator Π determines the consistency

rate of the semi-discrete scheme.

4. Fully discretized scheme based on Crank-Nicolson scheme

In the section, we will solve the ODE system (3.6) by the Crank-Nicolson scheme. Partition the

interval (0,T] into a uniform mesh with the time step τ =
T
l

: 0 = t0 < t1 < . . . < tl = T . Let

Uk = U(tk), k = 0, 1, . . . , l.
the nonlinear term of (3.6) is expanded using Taylor formula at the node vector Uk (k = 0, 1, . . . , l),

we get

dU
dt
− (C(2) ⊗ IN)U − (IM ⊗ D(2))U+

1
ε2 ((Uk)3 − Uk + (3(Uk)2 − 1)(U − Uk)) = 0. (4.1)

Crank-Nicolson scheme is used for time discretization, we have

Uk+1 − Uk

τ
− (C(2) ⊗ IN)Uk+1/2 − (IM ⊗ D(2))Uk+1/2

+
1
ε2 ((Uk)3 − Uk + (3(Uk)2 − 1)(Uk+1/2 − Uk)) = 0.

(4.2)

Inserting Uk+ 1
2 =

1
2

(
Uk+1 + Uk

)
into Eq (4.2), we obtain fully discretized scheme as

[
1
τ
−

1
2

(C(2) ⊗ IN) −
1
2

(IM ⊗ D(2)) +
1

2ε2

(
3
(
Uk

)2
− 1

)]
Uk+1

=

[
1
τ

+
1
2

(C(2) ⊗ IN) +
1
2

(IM ⊗ D(2)) +
1

2ε2

((
Uk

)2
+ 1

)]
Uk, k = 0, 1, . . . , l − 1.

(4.3)
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5. Numerical experiments

In this section, we will perform several numerical examples to test the accuracy and energy decline
property of the proposed scheme. we consider convergence tests in the first example and three 2D
problems with different initial conditions in the next examples.

For convenience, introducing the following error notations

E∞ =‖ uh − ue ‖∞, (5.1)

Er =
‖ uh − ue ‖∞

‖ ue ‖∞
, (5.2)

where uh and ue denote the numerical solution and the exact solution of the problem, respectively,
‖ · ‖∞ is the L∞ norm.

5.1. Convergence tests

We test numerical convergence order in time for 1D Allen-Cahn equation at first, the initial and
boundary condition are given the following analytical solution

u =
1
2

(
1 − tanh

(
x − st

2
√

2ε

))
, (5.3)

where
s =

3
√

2ε
, x ∈ (−1, 1), t ∈ (0, 1], ε = 0.3.

Fix M = 30, and time step τ is varied. The errors in maximum norm and convergence rates are
displayed in Table 1, from which we see that the scheme is second order in time for 1D Allen-Cahn
equation.

Table 1. Convergence rates in time for 1D problems.

τ E∞ Rate
1/16 0.0357 \

1/32 0.0084 2.0941
1/64 0.0021 1.9883

1/128 5.3137e-04 1.9876

Next, we verify the accuracy and convergence rate in time of the algorithm when applying to the
2D Allen-Cahn equation with the inhomogeneous term g(x, y, t). We consider the following problem
on Ω = [−1, 1]2 × (0,T ] as 

∂u
∂t
−

(
∂2u
∂x2 +

∂2u
∂y2

)
+

1
ε2 u

(
u2 − 1

)
= g

u(x, y, 0) = sin πx sin πy
u(−1, y, t) = 0, u(1, y, t) = 0
u(x,−1, t) = 0, u(x, 1, t) = 0

, (5.4)
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where


u = sin(πx) sin(πy) cos(t),

g = sin πx sin πy

2π2 cos t − sin t + cos t
(sin πx sin πy cos t)2

− 1
)

ε2

 . (5.5)

Take the following simulation parameters

ε = 0.3, τ = 0.001,T = 1

and vary numebers of mesh node M,N. The error comparison results of different discretization
schemes in space can be obtained, as shown in Table 2. One can see that both barycentric
interpolation collocation methods have high precision, as they only use 8 × 8 mesh nodes can achieve
the accuracy of second-order central difference approach with 40 × 40 mesh nodes. In addition, it is
also observed that the accuracy of barycentric Lagrange interpolation is slightly higher than that of
barycentric rational interpolation especially taking fewer mesh nodes from Table 2. In addition,
exponential convergence property of two methods also can be observed from Figure 1.

Table 2. The accuracy comparison of different schemes for 2D problems.

M N E∞ Er

second-order central difference

10 10 0.0061 0.0112
20 20 0.0015 0.0028
40 40 3.7978e-04 7.0290e-04
60 60 1.6893e-04 3.1266e-04
80 80 9.5136e-05 1.7608e-04

barycentric Lagrange interpolation

7 7 3.0607e-04 6.6109e-04
8 8 6.9387e-05 1.4758e-04
9 9 4.8971e-06 9.0637e-06

10 10 1.6138e-06 3.2261e-06
15 15 2.5483e-07 4.7164e-07

barycentric rational interpolation

7 7 4.6632e-04 0.0010
8 8 1.5223e-04 3.2378e-04
9 9 5.7433e-05 1.0630e-04

10 10 3.3863e-05 6.7694e-05
15 15 2.5427e-07 4.7060e-07
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Figure 1. Spatial L∞ errors at time T = 1 for 2D Allen-
Cahn equation.

Choose M = N = 20 and vary the temporal step τ. Table 3 indicates the derived scheme is indeed
of second order in time for 2D Allen-Cahn equation.

Table 3. Convergence rates in time for 2D problems.

τ E∞ Rate
1/16 9.8187e-04 \

1/32 2.4386e-04 2.0095
1/64 6.0755e-05 2.0050

1/128 1.5162e-05 2.0025

After that, we will show the energy decay property of the 2D Allen-Cahn equation. Define the
discrete energy function as

Eh
(
uk

)
=

1
4ε2

M∑
i=0

N∑
j=0

h2
i j

[(
uk

i j

)2
− 1

]2
+

1
2

N∑
j=0

M−1∑
i=1

h2
i j

uk
i+1, j − uk

i−1, j

2hi j

2

+
1
2

M∑
i=0

N−1∑
j=1

h2
i j

uk
i, j+1 − uk

i, j−1

2hi j

2

,

(5.6)

where uk
i j and Eh(uk) represent the numerical solution and the energy value at the k-th time separately,

hi j denotes spatial step size between adjacent Chebyshev nodes. The space diagram of 2D Allen-Cahn
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equation is shown in Figure 2. And from Figure 3, it is obvious that the energy is decreasing with time.

Figure 2. The numerical solution
diagram at t = 1.

Figure 3. Energy decline diagram.

5.2. Example 2

Consider 2D Allen-Cahn equation on Ω = [−2, 2]2 × (0,T ] with the following initial condition

u0(x, y) = − tanh
(

g(x)
√

2ε

)
, g(x) = max {−g1(x), g2(x),−g3(x)} , (5.7)

where

g1 =
√

x2 + (y − 2)2 − 2 +
3
2
ε, g2 =

√
x2 + y2 −

3
2
, g3 =

√
x2 + (y + 2)2 − 2 +

3
2
ε.

We take simulation parameters as

ε = 0.1, τ = 0.0001,M = N = 40,T = 1.

From Figure 4, we can see clearly that the connected interface splits into two curves at first. Then,
the two components of the interface develop circular shapes. Eventually, the diameters of the two
particles decrease to zero until they collapse.

(a) t = 0.01s (b) t = 0.05s (c) t = 0.1s (d) t = 0.15s (e) t = 0.2s

Figure 4. Snapshots of the phase variable u are taken at different time for Example 2.
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5.3. Example 3

Consider 2D Allen-Cahn equation on Ω = (−1, 1)2 × (0,T ]. Taking the following initial condition

u0(x, y) =
(
x2 − 1

) (
y2 − 1

)
(sin πx + sin πy) (5.8)

and parameters
ε = 0.07, τ = 0.0001,M = N = 30,T = 1.

Figure 5 shows process of the evolution of the numerical solution from forming the transition layer,
metastable state and finally reaching the steady state, respectively.

(a) t = 0s (b) t = 0.5s (c) t = 2s (d) t = 3s

Figure 5. Snapshots of the phase variable u are taken at different time for Example 3.

5.4. Example 4

Consider 2D Allen-Cahn equation in Ω = (−1, 1)2 × (0,T ] with simulation parameters

ε = 0.1,∆t = 0.0001,M = N = 30,T = 1.

The initial condition is taken as the randomly perturbed condition fields as follows

u0(x, y) = 0.1rand(x, y) − 0.05. (5.9)

where rand(x, y) represents a pair of random numbers generated between -1 and 1.
The coarsening phenomena of Allen-cahn equation with the evolution of time are presented in

Figure 6, from which we see that the solution reaches the steady state at t = 0.1s.

(a) t = 0s (b) t = 0.005s (c) t = 0.01s (d) t = 0.03s (e) t = 0.05s (f) t = 0.1s

Figure 6. Snapshots of the phase variable u are taken at different time for Example 4.

6. Conclusions

In this work, by a combination of the Crank-Nicolson scheme and barycentric interpolation
collocation method, an efficient numerical scheme for Allen-Cahn equation is developed. Besides, the
consistency analysis for the semi-discretized scheme in space is derived. The numerical examples
show that our scheme is second order in time and convergent exponentially in space. Energy
dissipation law is also checked numerically. In future work, we plan to give the error estimate of fully
discretized scheme and generalize this method to other models.
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