Research article Special Issues

On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions

  • Received: 07 October 2020 Accepted: 17 January 2021 Published: 26 January 2021
  • MSC : 34A08, 39A26, 34K32, 34A12

  • In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented.

    Citation: Yu-ting Wu, Heng-you Lan, Chang-jiang Liu. On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions[J]. AIMS Mathematics, 2021, 6(4): 3741-3760. doi: 10.3934/math.2021222

    Related Papers:

  • In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented.



    加载中


    [1] R. P. Agarwal, S. Arshad, D. OŔegan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572-590.
    [2] B. Ahmad, R. Luca, Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Solitons Fractals, 104 (2017), 378-388. doi: 10.1016/j.chaos.2017.08.035
    [3] A. Akilandeeswari, K. Balachandran, N. Annapoorani, Existence of solutions of fractional partial integrodifferential equations with Neumann boundary condition, Nonlinear Funct. Anal. Appl., 22 (2017), 711-722.
    [4] S. E. Amrahov, A. Khastan, N. Gasilov, A. G. Fatullayev, Relationship between Bede-Gal differentiable set-valued functions and their associated support functions, Fuzzy Set. Syst., 295 (2016), 57-71. doi: 10.1016/j.fss.2015.12.002
    [5] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Coupled systems of fractional differential inclusions with coupled boundary conditions, Electron. J. Differ. Equ., 69 (2019), 1-21.
    [6] K. Balachandran, L. Byszewski, J. K. Kim, Nonlocal Cauchy problem for second order functional differential equations and fractional differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 457-475.
    [7] M. A. Bayrak, Approximate solution of second-order fuzzy boundary value problem, New Trends in Mathematical ences, 3 (2017), 7-21. doi: 10.20852/ntmsci.2017.180
    [8] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021
    [9] A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535. doi: 10.2307/1940005
    [10] J. Brzdek, N. Eghbali, On approximate solutions of some delayed fractional differential equations, Appl. Math. Lett., 54 (2016), 31-35. doi: 10.1016/j.aml.2015.10.004
    [11] J. Cermak, T. Kisela, Oscillatory and asymptotic properties of fractional delay differential equations, Electron. J. Differ. Equ., 2019 (2019), 1-15. doi: 10.1186/s13662-018-1939-6
    [12] P. Cubiotti, J. C. Yao, On the two-point problem for implicit second-order ordinary differential equations, Bound. Value Probl., 2015 (2015), 1-25. doi: 10.1186/s13661-014-0259-3
    [13] J. H. Dong, Y. Q. Feng, J. Jiang, Initial value problem for a coupled system of nonlinear implicit fractional differential equations (Chinese), Acta Math. Appl. Sin., 42 (2019), 356-370.
    [14] A. G. Fatullayev, N. A. Gasilov, S. E. Amrahov, Numerical solution of linear inhomogeneous fuzzy delay differential equations, Fuzzy Optim. Decis. Mak., 18 (2019), 315-326. doi: 10.1007/s10700-018-9296-1
    [15] N. A. Gasilov, S. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817-3828. doi: 10.1007/s00500-017-2818-x
    [16] N. A. Gasilov, S. E. Amrahov, A. G. Fatullayev, I. F. Hashimoglu, Solution method for a boundary value problem with fuzzy forcing function, Inform. Sci., 317 (2015), 349-368. doi: 10.1016/j.ins.2015.05.002
    [17] N. A. Gasilov, I. F. Hashimoglu, S. E. Amrahov, A. G. Fatullayev, A new approach to non-homogeneous fuzzy initial value problem, Comput. Model. Eng. Sci., 85 (2012), 367-378.
    [18] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2003.
    [19] N. V. Hoa, On the initial value problem for fuzzy differential equations of non-integer order $\alpha\in(1, 2)$, Soft Comput., 24 (2020), 935-954. doi: 10.1007/s00500-019-04619-7
    [20] N. V. Hoa, V. Lupulescu, D. OŔegan, A note on initial value problems for fractional fuzzy differential equations, Fuzzy Set. Syst., 347 (2018), 54-69. doi: 10.1016/j.fss.2017.10.002
    [21] N. V. Hoa, H. Vu, A survey on the initial value problems of fuzzy implicit fractional differential equations, Fuzzy Set. Syst., 400 (2020), 90-133. doi: 10.1016/j.fss.2019.10.012
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Amsterdam: Elsevier Science B.V., 2006.
    [23] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, Boca Raton: CRC Press, 2015.
    [24] M. Mazandarani, A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 12-21. doi: 10.1016/j.cnsns.2012.06.008
    [25] M. Mazandarani, N. Pariz, A. V. Kamyad, Granular differentiability of fuzzy-number-valued functions, IEEE T. Fuzzy Syst., 26 (2017), 310-323.
    [26] C. Min, N. J. Huang, Z. B. Liu, L. Zhang, Existence of solution for implicit fuzzy differential inclusions, Appl. Math. Mech., 36 (2015), 401-416. doi: 10.1007/s10483-015-1914-6
    [27] S. Pandey, S. B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum, Carbohyd. Polym., 113 (2014), 525-531. doi: 10.1016/j.carbpol.2014.07.047
    [28] I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering, 198. San Diego, CA: Academic Press, Inc., 1999.
    [29] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, P. Agarwal, On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy, 17 (2015), 885-902. doi: 10.3390/e17020885
    [30] H. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, New York: Springer, 2011.
    [31] N. T. K. Son, N. P. Dong, Systems of implicit fractional fuzzy differential equations with nonlocal conditions, Filomat, 33 (2019), 3795-3822. doi: 10.2298/FIL1912795S
    [32] B. Z. Sun, S. Q. Zhang, W. H. Jiang, Impulsive problems for fractional differential equations with functional boundary value conditions at resonance, J. Funct. Spaces, 2019 (2019), 1-12.
    [33] R. Tabassum, A. Azam, M. S. Shagari, Existence results of delay and fractional differential equations via fuzzy weakly contraction mapping principle, Appl. Gen. Topol., 20 (2019), 449-469. doi: 10.4995/agt.2019.11683
    [34] V. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media: Higher Education Press, 2011.
    [35] Z. B. Wu, Y. Z. Zou, N. J. Huang, A new class of global fractional-order projective dynamical system with an application, J. Ind. Manag. Optim., 16 (2020), 37-53.
    [36] P. Yang, J. R. Wang, Y. Zhou, Representation of solution for a linear fractional delay differential equation of Hadamard type, Adv. Differ. Equ., 2019 (2019), 1-7. doi: 10.1186/s13662-018-1939-6
    [37] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
    [38] C. B. Zhai, J. Ren, A coupled system of fractional differential equations on the half-line, Bound. Value Probl., 117 (2019), 1-22.
    [39] C. R. Zhu, K. Q. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 289-306.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2333) PDF downloads(152) Cited by(4)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog