This paper is concerned with multi-term fractional differential equations. With the help of the theory of fractional resolvent families, we establish the existence of mild solutions to a multi-term fractional differential equation.
Citation: Yong-Kui Chang, Rodrigo Ponce. Mild solutions for a multi-term fractional differential equation via resolvent operators[J]. AIMS Mathematics, 2021, 6(3): 2398-2417. doi: 10.3934/math.2021146
This paper is concerned with multi-term fractional differential equations. With the help of the theory of fractional resolvent families, we establish the existence of mild solutions to a multi-term fractional differential equation.
[1] | M. Ali, S. A. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions, Math. Methods Appl. Sci., 40 (2017), 7737–7748. |
[2] | E. Alvarez-Pardo, C. Lizama, Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions, Electron. J. Differ. Equations, 39 (2014), 1–10. |
[3] | B. de Andrade, C. Cuevas, H. Soto, On fractional heat equations with non-local initial conditions, Proc. Edinburgh Math. Soc., 59 (2016), 65–76. doi: 10.1017/S0013091515000590 |
[4] | D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 69 (2008), 3692–3705. doi: 10.1016/j.na.2007.10.004 |
[5] | W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2011. |
[6] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. doi: 10.1016/0022-247X(91)90164-U |
[7] | A. Caicedo, C. Cuevas, G. M. Mophou, G. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst., 349 (2012), 1–24. |
[8] | J. Cao, Q. Yang, Z. Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 277–283. doi: 10.1016/j.cnsns.2011.05.005 |
[9] | P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb R^N, $ J. Differ. Equations, 259 (2015), 2948–2980. |
[10] | P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calculus Appl. Anal., 23 (2020), 268–291. doi: 10.1515/fca-2020-0011 |
[11] | E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Conference Publications, American Institute of Mathematical Sciences, 2007 (2007), 277–285. |
[12] | C. Cuevas, C. Lizama, Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. Math. Lett., 21 (2008), 1315–1319. doi: 10.1016/j.aml.2008.02.001 |
[13] | C. Cuevas, J. C. de Souza, S-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865–870. |
[14] | T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2013. |
[15] | J. Diestel, J. J. Uhl, Vector Measures, American Mathematical Society, Providence, 1977. |
[16] | S. D, Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211–255. |
[17] | K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup forum, Springer-Verlag, 63 (2001), 278–280. doi: 10.1007/s002330010042 |
[18] | M. Haase, The Functional Calculus for Sectorial Operators, Birkäuser Verlag, Basel, 2006. |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[20] | K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476–510. doi: 10.1016/j.jfa.2012.04.011 |
[21] | C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 243 (2000), 278–292. doi: 10.1006/jmaa.1999.6668 |
[22] | C. Lizama, Solutions of two-term time fractional order differential equations with nonlocal initial conditions, Electron. J. Qualitative Theory Differ. Equations, 82 (2012), 1–9. |
[23] | C. Lizama, G. M. N'Guérékata, Bounded mild solutions for semilinear integro-differential equations in Banach spaces, Integr. Equations Oper. Theory, 68 (2010), 207–227. |
[24] | C. Lizama, G. M. N'Guérékata, Mild solutions for abstract fractional differential equations, Appl. Anal., 92 (2013), 1731–1754. |
[25] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. |
[26] | G. M. Mophou, G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, Springer-Verlag, 79 (2009), 315–322. |
[27] | G. M. N'Guérékata, Topics in Almost Automorphy, Springer Verlag, New York, 2005. |
[28] | R. Ponce, Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett., 105 (2020), 106322. doi: 10.1016/j.aml.2020.106322 |
[29] | R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, Springer US, 87 (2013), 377–392. doi: 10.1007/s00233-013-9474-y |
[30] | R. Ponce, Existence of mild solutions to nonlocal fractional Cauchy problems via compactness, Abstr. Appl. Anal., 2016 (2016), 4567092. |
[31] | R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differ. Equations, 255 (2013), 3284–3304. doi: 10.1016/j.jde.2013.07.035 |
[32] | R. Ponce, Subordination principle for fractional diffusion-wave equations of Sobolev type, Fract. Calculus Appl. Anal., 23 (2020), 427–449. doi: 10.1515/fca-2020-0021 |
[33] | X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2, $ Comput. Math. Appl., 64 (2012), 2100–2110. |
[34] | L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calculus Appl. Anal., 22 (2019), 1086–1112. |
[35] | B. T. Torebek, R. Tapdigoglu, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, Math. Methods Appl. Sci., 40 (2017), 6468–6479. doi: 10.1002/mma.4468 |
[36] | V. V. Vasilev, S. I. Piskarev, Differential equations in Banach spaces. Ⅱ. Theory of cosine operator functions, J. Math. Sci., 122 (2004), 3055–3174. doi: 10.1023/B:JOTH.0000029697.92324.47 |
[37] | G. Wang, X. Ren, Z. Bai, W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131–137. doi: 10.1016/j.aml.2019.04.024 |
[38] | R. N. Wang, T. J. Xiao, J. Liang, A note on the fractional Cauchy problems with nonlocal initial conditions, Appl. Math. Lett., 24 (2011), 1435–1442. doi: 10.1016/j.aml.2011.03.026 |
[39] | A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen $E^a(x), $ Acta Math., 29 (1905), 191–201. |
[40] | A. Wiman, Über die Nullstellen der Funktionen $E^a(x), $ Acta Math., 29 (1905), 217–234. |
[41] | X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, 2019. |
[42] | X. J. Yang, F. Gao, Y. Ju, General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, 2020. |
[43] | X. J. Yang, New insight into the Fourier-like and Darcy-like models in porous medium, Thermal Sci., 24 (2020), 3847–385. doi: 10.2298/TSCI2006847Y |
[44] | R. Zacher, A weak Harnack inequality for fractional differential equations, J. Integral Equations Appl., 19 (2007), 209–232. |
[45] | Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, 2014. |