The authors introduce a finite variable quadratic functional equation and derive its solution. Also, authors examine its Hyers-Ulam stability in Random Normed space(RN-space) by means of two different methods.
Citation: Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan. Stability results of the functional equation deriving from quadratic function in random normed spaces[J]. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
The authors introduce a finite variable quadratic functional equation and derive its solution. Also, authors examine its Hyers-Ulam stability in Random Normed space(RN-space) by means of two different methods.
[1] | A. M. Alanazi, G. Muhiuddin, K. Tamilvanan, E. N. Alenze, A. Ebaid, K. Loganathan, Fuzzy stability results of finite variable additive functional equation: Direct and fixed point methods, Mathematics, 8 (2020), 1050. doi: 10.3390/math8071050. |
[2] | M. Arunkumar, S. Karthikeyan, S. Ramamoorthi, Generalized Ulam-Hyers stability of $N$-dimensional cubic functional equation in FNS and RNS: various methods, Middle-East J. Sci. Res., 24 (2016), 386–404. |
[3] | H. A. Kenary, RNS-approximately nonlinear additive functional equations, J. Math. Extension, 6 (2012), 11–20. |
[4] | E. Baktash, Y. J. Cho, M. Jalili, R. Saadati, S. M. Vaezpour, On the stability of cubic mappings and quadratic mappings in random normed spaces, J. Inequalities Appl., (2008), Article ID 902187, 11, doi: 10.1155/2008/902187. |
[5] | S. S. Chang, Y. J. Cho, S. M. Kang, Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc. New York, (2001). |
[6] | S. S. Jin, Y. H. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012), 51–63. doi: 10.14403/jcms.2012.25.1.051 |
[7] | K. Jun, Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93–118. |
[8] | Z. Gajda, On stability of additive mappings, Intern. J. Math. Math. Sci., 14 (1991), 431–434. |
[9] | P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. doi: 10.1006/jmaa.1994.1211 |
[10] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222 |
[11] | Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368–372. |
[12] | D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567–572. doi: 10.1016/j.jmaa.2008.01.100 |
[13] | D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., doi: 10.1016/j.fss.2008.06.014. |
[14] | C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadratic-multiplicative property, Open Math., 18 (2020), 837–845. doi: 10.1515/math-2020-0032 |
[15] | C. Park, K. Tamilvanan, B. Noori, M. B. Moghimi, A. Najati, Fuzzy normed spaces and stability of a generalized quadratic functional equation, AIMS Math., 5 (2020), 7161–-7174. |
[16] | C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal. TMA, 57 (2004), 713–722. doi: 10.1016/j.na.2004.03.013 |
[17] | J. M. Rassias, On approximately of approximatelylinear mappings by linear mappings, J. Funct. Anal. USA., 46 (1982), 126–130. doi: 10.1016/0022-1236(82)90048-9 |
[18] | M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. |
[19] | M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, (1998), 89–124. |
[20] | M. Rassias, K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl., 228 (1998), 234–253. doi: 10.1006/jmaa.1998.6129 |
[21] | K. Ravi, M. Arunkumar, J. M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci. Autumn, 3 (2008), 36–47. |
[22] | B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983. |
[23] | A. N. Sherstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963), 280–283. |
[24] | K. Tamilvanan, J. R. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993–6005. doi: 10.3934/math.2020383 |
[25] | K. Tamilvanan, J. R. Lee, C. Park, Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces, AIMS Math., 6 (2020), 908-–924. |
[26] | S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964. |