Research article

Stability results of the functional equation deriving from quadratic function in random normed spaces

  • Received: 21 September 2020 Accepted: 15 December 2020 Published: 18 December 2020
  • MSC : Primary: 54E40, 39B82, 46S50, 46S40

  • The authors introduce a finite variable quadratic functional equation and derive its solution. Also, authors examine its Hyers-Ulam stability in Random Normed space(RN-space) by means of two different methods.

    Citation: Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan. Stability results of the functional equation deriving from quadratic function in random normed spaces[J]. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145

    Related Papers:

  • The authors introduce a finite variable quadratic functional equation and derive its solution. Also, authors examine its Hyers-Ulam stability in Random Normed space(RN-space) by means of two different methods.



    加载中


    [1] A. M. Alanazi, G. Muhiuddin, K. Tamilvanan, E. N. Alenze, A. Ebaid, K. Loganathan, Fuzzy stability results of finite variable additive functional equation: Direct and fixed point methods, Mathematics, 8 (2020), 1050. doi: 10.3390/math8071050.
    [2] M. Arunkumar, S. Karthikeyan, S. Ramamoorthi, Generalized Ulam-Hyers stability of $N$-dimensional cubic functional equation in FNS and RNS: various methods, Middle-East J. Sci. Res., 24 (2016), 386–404.
    [3] H. A. Kenary, RNS-approximately nonlinear additive functional equations, J. Math. Extension, 6 (2012), 11–20.
    [4] E. Baktash, Y. J. Cho, M. Jalili, R. Saadati, S. M. Vaezpour, On the stability of cubic mappings and quadratic mappings in random normed spaces, J. Inequalities Appl., (2008), Article ID 902187, 11, doi: 10.1155/2008/902187.
    [5] S. S. Chang, Y. J. Cho, S. M. Kang, Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc. New York, (2001).
    [6] S. S. Jin, Y. H. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012), 51–63. doi: 10.14403/jcms.2012.25.1.051
    [7] K. Jun, Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93–118.
    [8] Z. Gajda, On stability of additive mappings, Intern. J. Math. Math. Sci., 14 (1991), 431–434.
    [9] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. doi: 10.1006/jmaa.1994.1211
    [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
    [11] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368–372.
    [12] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567–572. doi: 10.1016/j.jmaa.2008.01.100
    [13] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., doi: 10.1016/j.fss.2008.06.014.
    [14] C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadratic-multiplicative property, Open Math., 18 (2020), 837–845. doi: 10.1515/math-2020-0032
    [15] C. Park, K. Tamilvanan, B. Noori, M. B. Moghimi, A. Najati, Fuzzy normed spaces and stability of a generalized quadratic functional equation, AIMS Math., 5 (2020), 7161–-7174.
    [16] C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal. TMA, 57 (2004), 713–722. doi: 10.1016/j.na.2004.03.013
    [17] J. M. Rassias, On approximately of approximatelylinear mappings by linear mappings, J. Funct. Anal. USA., 46 (1982), 126–130. doi: 10.1016/0022-1236(82)90048-9
    [18] M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
    [19] M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, (1998), 89–124.
    [20] M. Rassias, K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl., 228 (1998), 234–253. doi: 10.1006/jmaa.1998.6129
    [21] K. Ravi, M. Arunkumar, J. M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci. Autumn, 3 (2008), 36–47.
    [22] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.
    [23] A. N. Sherstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963), 280–283.
    [24] K. Tamilvanan, J. R. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993–6005. doi: 10.3934/math.2020383
    [25] K. Tamilvanan, J. R. Lee, C. Park, Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces, AIMS Math., 6 (2020), 908-–924.
    [26] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(49) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog