Citation: Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV. An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation[J]. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243
[1] | F. Maucher, D. Buccoliero, S. Skupin, et al. Tracking azimuthons in nonlocal nonlinear media, Opt. Quant. Electron., 41 (2009), 337-348. doi: 10.1007/s11082-009-9351-9 |
[2] | M. Alidou, A. Kenfack-Jiotsa, T. C. Kofane, Modulational instability and spatiotemporal transition to chaos, Chaos, Solitons Fractals, 27 (2006), 914-925. doi: 10.1016/j.chaos.2005.04.039 |
[3] | R. Nath, P. Pedri, L. Santos, Stability of Dark Solitons in Three Dimensional Dipolar Bose-Einstein Condensates, Phys. Rev. Lett., 101 (2008), 210402. doi: 10.1103/PhysRevLett.101.210402 |
[4] | M. G. Prahović, R. D. Hazeltine, P. J. Morrison, Exact solutions for a system of nonlinear plasma fluid equations, Physics of Fluids B: Plasma Physics, 4 (1992), 831-840. doi: 10.1063/1.860236 |
[5] | P. B. Ndjoko, J. M. Bilbault, S. Binzcak, et al. Compact-envelope bright solitary wave in a DNA double strand, Phys. Rev. E, 85 (2012). doi: 10.1103/PhysRevE.85.011916 |
[6] | S. B. Yamgoue, F. B. Pelap, Comment on Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line, Phys. Lett. A., 380 (2016), 2017-2020. doi: 10.1016/j.physleta.2016.03.043 |
[7] | G. R. Deffo, S. B. Yamgoue, F. B. Pelap, Modulational instability and peak solitary wave in a discrete nonlinear electrical transmission line described by the modified extended nonlinear Schrodinger equation, The Eurupean Phys. J., 91 (2018). |
[8] | E. Kengne, R. Vaillancourt, Transmission of solitary pulse in dissipative nonlinear transmission lines, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 3804-3810. doi: 10.1016/j.cnsns.2008.08.016 |
[9] | E. Fan, Y. C. Hon, Applications of extended tanh method to special types of nonlinear equations, Appl. Math. Comput., 141 (2003), 351-358. |
[10] | A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131-1142. |
[11] | Z. Feng, On explicit exact solutions to the compound Burgers-Kdv equation, Phys. Lett., 293 (2002), 57-66. doi: 10.1016/S0375-9601(01)00825-8 |
[12] | K. Hosseini, P. Gholamin, Feng's first integral method for analytic treatment of two higher dimensional nonlinear partial differantial equations, Differantial Equations and Dynamical Systems, 23 (2015), 317-325. |
[13] | A. M. Wazwaz, Sine-cosine method for handling nonlinear wave equations, Math. Comput. Model., 40 (2004), 499-508. |
[14] | Y. Fu, J. Li, Exact stationary-wave solutions in the standart model of the Kerr-nonlinear optical fiber with the Bragggrating, J. Appl. Anal. Comput., 7 (2017), 1177-1184. |
[15] | N. Tanghizadeh, M. Mirzazadeh, A. S. Paghaleh, et al. Exact solutions of nonlinear evolution equations by using the modified simple equation method, Ain Shams Eng. J., 3 (2012), 321-325. doi: 10.1016/j.asej.2012.03.010 |
[16] | M. Mirzazadeh, Modified simple equation method and its applications to nonlinear partial differantial equations, Inf. Sci. Lett., 3 (2014), 1-9. doi: 10.12785/isl/030101 |
[17] | A. J. M. Jawad, Soliton solutions for nonlinear systems (2+1) dimensional equations, IOSR Journal of Mathematics, 1 (2012), 27-34. |
[18] | I. E. Inan, D. Kaya, Exact solutions of some nonlinear partial differential equations, Physica A, 381 (2007), 104-115. doi: 10.1016/j.physa.2007.04.011 |
[19] | M. A. Akbar, N. H. M. Ali, The improved F-expansion method with Riccati equation and its applications in mathematical physics, Cogent Mathematics, 4 (2017), 1-19. |
[20] | Y. M. Zhao, F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation, J. Appl. Math., 2013 (2013). |
[21] | F. Ozpinar, H. M. Baskonus, H. Bulut, On the complex and hyperbolic structures for the (2+1)- dimensional boussinesq water equation, Entropy, 17 (2015), 8267-8277. |
[22] | H. M. Baskonus, M. Askin, Travelling Wave Simulations to the Modified Zakharov-Kuzentsov Model Arising In Plasma Physics, 6th International Youth Science Forum, Computer Science and Engineering, (2016) Lviv, Ukraine, 24-26 November. |
[23] | H. M. Baskonus, H. Bulut, Exponential prototype structure for (2+1) dimensional Boiti Leon Pempinelli systems in mathematical physics, Waves Random Complex Media, 26 (2016), 189-196. doi: 10.1080/17455030.2015.1132860 |
[24] | F. Dusunceli, Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method, MSU Journal of Science, J. Amer. Math. Soc., 6 (2018), 505-510. |
[25] | W. Liu and K. Chen, The functional variable method for finding exact solutions of some nonlinear timefractional differential equations, Pramana, 81 (2013), 377-384. doi: 10.1007/s12043-013-0583-7 |
[26] | B. Lu, The first integral method for some time fractional diferential equations, J. Math. Anal. Appl., 395 (2012), 684-693. doi: 10.1016/j.jmaa.2012.05.066 |
[27] | Z. Bin, Exp-function method for solving fractional partial dierential equations, The Sci. World J., 2013 (2013), 1-8. |
[28] | A. Emad, B. Abdel-Salam, A. Y. Eltayeb, Solution of nonlinear space-time fractional diffeerential equations using the fractional Riccati expansion method, Math. Probl. Eng., 2013 (2013), 1-6. |
[29] | H. Bulut, G. Yel, H. M. Baskonus, An Application of Improved Bernoulli Sub-Equation Function Method to The Nonlinear Time-Fractional Burgers Equation, Turk. J. Math. Comput. Sci., 5 (2016), 1-7. |
[30] | D. G. Prakasha, P. Veeresha, H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, The European Physical Journal Plus, 134 (2019), 241. doi: 10.1140/epjp/i2019-12590-5 |
[31] | R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[32] | T. Abdeljawad, On conformable fractional calulus, J. Comput. Appl. Math., 279 (2015), 57-66. |
[33] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 1-10. doi: 10.1515/math-2015-0081 |
[34] | A. Atangana, A novel model for the lassa hemorrhagic fever, deathly disease for pregnant women, Neural. Comput. Appl., 26 (2015), 1895-1903. doi: 10.1007/s00521-015-1860-9 |
[35] | A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), 278. doi: 10.1007/s11082-017-1116-2 |
[36] | A. Korkmaz, Exact solutions of space-time fractional EW and modified EW equations, Chaos, Solitons Fractals, 96 (2017), 132-138. doi: 10.1016/j.chaos.2017.01.015 |
[37] | A. Korkmaz, Exact solutions to (3 + 1) conformable time fractional Jimbo-Miwa, ZakharovKuznetsov and modified Zakharov-Kuznetsov equations, Commun. Theor. Phys., 67 (2017), 479-482. doi: 10.1088/0253-6102/67/5/479 |
[38] | K. Hosseini, R. Ansari, New exact solutions of nonlinear conformable timefractional Boussinesq equations using the modified Kudryashov method, Waves Random Complex Media, 27 (2017), 628-636. doi: 10.1080/17455030.2017.1296983 |
[39] | D. Kumar, J. Singh, D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A, 492 (2018), 155-167. doi: 10.1016/j.physa.2017.10.002 |
[40] | D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653. |
[41] | T. A. Sulaiman, M. Yavuz, H. Bulut, et al. Investigation of the fractional coupled viscous Burgers' equation involving Mittag-Leffler kernel, Physica A: Statistical Mechanics and its Applications, 527 (2019), 121-126. doi: 10.1016/j.physa.2019.121126 |
[42] | H. Rezazadeh, D. Kumar, T. A. Sulaiman, et al. New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Mod. Phys. Lett. B, 33 (2019), 1950196. |
[43] | H. Rezazadeh, A. Korkmaz, M. Eslami, et al. Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quant. Electron., 50 (2018), 150. |
[44] | G. Yel, H. M. Baskonus, Solitons in conformable time-fractional Wu-Zhang system arising in coastal design, Pramana, 93 (2019), 57. |
[45] | C. E. Seyler, D. L. Fenstermacher, A symmetric regularized-long-wave equation, Phys. Fluids, 27 (1984), 4-7. |
[46] | R. I. Nuruddeen, A. M. Nass, Exact solitary wave solution for the fractional and classical GEWBurgers equations: an application of Kudryashov method, Journal of Taibah University for Science, 12 (2018), 309-314. doi: 10.1080/16583655.2018.1469283 |
[47] | K. K. Ali, R. I. Nuruddeen, K. R. Raslan, New structures for the space-time fractional simplified MCH and SRLW equations, Chaos Soliton. Fractal., 106 (2018), 304-309. doi: 10.1016/j.chaos.2017.11.038 |