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Abstract: The nonlinear conformable time-fractional Symmetric Regularized Long Wave (SRLW)
equation plays an important role in physics. This equation is an interesting model to describe ion-
acoustic and space change waves with weak nonlinearity. In this paper, we solve the SRLW equation
via the Improved Bernoulli Sub-Equation Function Method (IBSEFM). New exact solutions are
constructed and by the aid of software mathematics programme, 2D and 3D graphs of the solutions
according to the parameters are plotted. The results show that IBSEFM is a powerful mathematical
tool to solve nonlinear conformable time-fractional equations arising in mathematical physics.
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1. Introduction

The investigation of exact travelling wave solutions of nonlinear partial differential equations
(NLPDEs) is important to understand the nonlinear physical process that appears in many areas of
scientific fields such as nonlinear optics [1, 2], plasma physics [3, 4], biophysics [5] and discrete
electrical transmission lines [6–8].

To find the exact solutions of these equations, many powerful methods have been applied in the
literature by mathematicians and physicists. Some of these effective methods are extended tanh method
[9,10], first integral method [11,12], sine-cosine method [13], dynamical system method [14], modified
simple equation method [15, 16], tanh method [17], generalized tanh function method [18], improved
F expansion method with Riccati equation [19, 20], modified exp(Ω(ξ))-expansion function method
[21, 22], Kudryashov method [46] and improved Bernoulli sub-equation function method [23, 24].

In recent years, the fractional differential equations have become a useful tool for describing
nonlinear phenomena of science and engineering models. Many of techniques which applied to the
nonlinear partial differential equations have been adapted for fractional nonlinear partial differential

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020243


3752

equations to find exact solutions. For example the functional variable method [25], the first integral
method [26], the exp-function method [27], Kudryashov method [46], modified extended tanh
method [47], fractional Riccati expansion method [28], modified extended tanh method [29, 30] and
many others.

In [31] a new simple well behaved definition of the fractional derivative called conformable
fractional derivative is introduced. The conformable fractional derivative is theoretically easier than
fractional derivative to handle. Also the conformable fractional derivative obeys some conventional
properties that can’t be satisfied by the existing fractional derivatives, for instance; the chain rule [32].
The conformable fractional derivative has the weakness that the fractional derivative of any
differentiable function at the point zero is equal to zero. So that in [32, 33], it is proposed a suitable
fractional derivative that allows us to escape the lack of the conformable fractional derivative. During
the last few years, many of techniques applied to find exact solutions for conformable fractional
nonlinear partial differential equations [34–47].

In this paper, we obtain the exact solutions of conformable time fractional Symmetric Regularized
Long Wave (SRLW) equation by using IBSEFM. We consider

D2α
tt u + puxx + quDα

t ux + quxDα
t u + rD2α

tt uxx = 0, t > 0, (1.1)

where u = u(x, t), p, q and r real parameters, D2α
tt is the fractional differential operator of order 2α in

conformable sense. This equation is an interesting model to describe ion-acoustic and space charge
waves with weak non linearity [47]. Before beginning to the solution procedure, we should give
some significant properties of conformable fractional derivative. We explain the solution procedure
in the third section and in the fourth section we give the implementation of the proposed procedure to
conformable time fractional SRLW equation.

2. Conformable fractional derivative

In this section, we give some basic definitions and theorems of the conformable fractional derivative.
The conformable derivative of order α with respect to the independent variable t is defined as [31]

Da
t (y(t)) = lim

τ→0

y(t + τt1−α) − y(t)
τ

, t > 0, α ∈ (0, 1] ,

for a function y = y(t) : [0,∞)→ R.

Theorem 2.1. Assume that the order of the derivative α ∈ (0, 1] and suppose that u = u(t) and v = v(t)
are α− differentiable for all positive t. Then,

1. Da
t (c1u + c2v) = c1Da

t (u) + c2Da
t (v), for ∀ c1, c2 ∈ R.

2.Da
t (tk) = ktk−a,∀ k ∈ R.

3.Da
t (λ) = 0, for all constant function u(t) = λ.

4. Da
t (uv) = uDa

t (v) + vDa
t (u).

5.Da
t

(
u
v

)
=

vDa
t (u)−uDa

t (v)
v2 .

6.Da
t (u) (t) = t1−α du

dt .

Conformable fractional differential operator satisfies some critical fundamental properties like the
chain rule, Taylor series expansion and Laplace transform.
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Theorem 2.2. Let u = u(t) be an α− conformable differentiable function and assume that v is
differentiable and defined in the range of u. Then,

Da
t (u ◦ v)(t) = t1−αv′(t)u′(v(t)).

The proofs of these theorems are given in [32] and in [35] respectively.

3. Basic properties of the improved Bernoulli sub-equation function method (IBSEFM)

In this section let us give the fundamental properties of the IBSEFM. We present the four main steps
of the IBSEFM below the following:

Step 1: Let us consider the following conformable time-fractional PDE of the form

P(u,Dα
t u, ux,D2α

tt u, uxx, ...) = 0. (3.1)

The goal is converting (3.1) with a suitable fractional transformation into the nonlinear ordinary
differential equation. The wave transformation as;

u(x, t) = U (η) , η =

(
x −

vtα

α

)
, (3.2)

where v is a constant to be determined later. Using chain rule and substituting (3.2) in (3.1), we obtain
the following nonlinear ordinary differential equation;

N(U,U′,U′′, ...) = 0. (3.3)

Step 2: We hypothesize that the solution of (3.3) may be presented below;

U(η) =

n∑
i=0

aiF i(η)

m∑
j=0

b jF j(η)
=

a0 + a1F(η) + a2F2(η) + ...anFn(η)
b0 + b1F(η) + b2F2(η) + ...bmFm(η)

, (3.4)

where a0, a1, ..., an and b0, b1, ..., bm are coefficients which will be determined later. m , 0, n , 0 are
arbitrary constants that chosen according to the balance principle and considering the form of Bernoulli
differential equation below the following;

F′(η) = σF(η) + dFM(η), σ , 0, d , 0, M ∈ R − {0, 1, 2} , (3.5)

where F(η) is polynomial. Substituting (3.4) and (3.5) in (3.3), it yields us an equation of polynomial
Ω(F) of F as following:

Ω(F(η)) = ρsF(η)s + ... + ρ1F(η) + ρ0 = 0.

According to the balance principle that is the highest order derivative term and nonlinear term in (3.3),
we can determine the relationship between n,m and M.

Step 3: The coefficients of Ω(F(η)) all be zero will give us an algebric system of equations;

ρi = 0, i = 0, ..., s.
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Solving this system, we can specify the values of a0, a1, ..., an and b0, b1, ..., bm.

Step 4: When we solve differential equation (3.5), we obtain the following two situations according
to σ and d;

F(η) =

[
−d
σ

+
E

eσ(M−1)η

] 1
1−M

, σ , d, (3.6)

F(η) =

 (E − 1) + (E + 1) tanh(σ(1 − M)) η2
1 − tanh

(
σ(1 − M) η2

)  , σ = d, E ∈ R.

Using a complete discrimination system for polynomial of F(η), we obtain the analytical solutions
of (3.3) with the help of software programme and classify the exact solutions of (3.3). For a better
interpretations of obtained results, we can plot two and three dimensional figures of analytical solutions
by considering suitable values of parameters.

4. Application of the IBSEFM method

In this section, the application of the IBSEFM to the conformable time-fractional SRLW equation
is presented. Consider the following wave transform

u(x, t) = U(η), η = a
(
x − v

tα

α

)
, (4.1)

where a is the wave height and v is the wave velocity.
Substituting (4.1) into (1.1) and integrating once respect to ξ, we get nonlinear ordinary differential

equation; (
a2v2 + a2 p

)
U + rv2a4U′′ − qva2 U2

2
= C, (4.2)

where C is constant of integration and assume that C = 0 to reduce the complexity of the solutions.
When we reconsider (4.2) for balance principle, considering between U2 and U′′, we obtain the
following relationship:

2M + m = n + 2.

This relationship of m, n and M gives us different versions of the solutions to (4.2) and we can obtain
some analytical solutions as follows:

If we take M = 3, n = 5,m = 1 for (3.4) and (3.5), then we can write the following equations;

U(η) =
a0 + a1F(η) + a2F2(η) + a3F3(η) + a4F4(η) + a5F5(η)

b0 + b1F(η)
=

Υ(η)
Ψ(η)

, (4.3)

U′(η) =
Υ′(η)Ψ (η) − Υ(η)Ψ′(η)

Ψ2(η)
, (4.4)

and

U′′(η) =
Υ′(η)Ψ (η) − Υ(η)Ψ′(η)

Ψ2(η)
−

[
Υ(η)Ψ′ (η)

]′
Ψ2(η) − 2Υ(η)[Ψ′(η)]2Ψ(η)

Ψ4(η)
, (4.5)

where F′ = σF + dF3, a2 , 0, b1 , 0, σ , 0, d , 0. When we use (4.3)-(4.5) in (4.2), we obtain a
system of algebraic equations from coefficients of polynomial of F. By solving the algebraic system of
equations with the help of mathematics software programme, it yields us the following coefficients:
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Case 1:

a0 = 0, a1 = 0, a2 =
σa4

d
, a3 =

σa5

d
, a4 = a4, a5 = a5,

b0 =
q
(
−1 +

√
1 − 16a2 prσ2

)
a4

96a2d2 pr
, b1 = −

q
(
−1 +

√
1 − 16a2 prσ2

)
a5

96a2d2 pr
,

v = −
1 +

√
1 − 16a2 prσ2

8a2rσ2 .

Substituting these coefficients along with (3.6) in (4.3) we obtain the following solution of the
conformable time fractional SRLW equation;

u1(x, t) = −

6d exp
{

2σ
(
ax +

tα(1+
√

1−16a2 prσ2)
8arασ2

)}
Eσ

(
1 +

√
1 − 16a2 prσ2

)
qd

(
exp

{
2σ

(
ax +

tα(1+
√

1−16a2 prσ2)
8arασ2

)}
− Eσ

)2 ,

where d, σ, a, r, E, q, d, α are constants and not zero (Figure 1).

Figure 1. The 3D and 2D surfaces of u1(x, t). By considering the values r = 0.1; d = 0.2;
p = 0.5; a = 0.2; v = 0.3; σ = 1; α = 1; q = 0.4; E = 0.3; −15 < x < 15, −1 < t < 1 for 3D
surface and −5 < x < 5; t = 0.1 for 2D surface.

Case 2:

a0 =
(p + v)a4

24a2d2rv2 , a1 =
(p + v)a5

24a2d2rv2 , a2 =

√
p + va4

2ad
√

rv
, a3 =

√
p + va5

2ad
√

rv
,

a4 = a4, a5 = a5, b0 =
qa4

48a2d2rv
, b1 =

qa5

48a2d2rv
, σ =

√
p + v

2a
√

rv
.

Substituting these coefficients along with (3.6) in (4.3) we obtain following solution of the conformable
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time fractional SRLW equation;

u2(x, t) =

2

p + v

1 +
12ad exp

{ √
p+v(tαv−xa
√

rva

}
√

r(p+v)
3
2 E(

−2ad
√

rv+exp
{ √

p+v(tαv−xa
√

rva

}
√

p+vE
)2


qv

,

where a, p, E, q, d, v, r, α are constants and not zero (Figure 2).

Figure 2. The 3D and 2D surfaces of u2(x, t). By considering the values r = 0.5; d = 0.3;
p = 0.2; a = 1; v = 0.5; σ = 1; α = 1; q = 0.5; E = 0.5; −10 < x < 10, −10 < t < 10 for 3D
surface and −15 < x < 15; t = 0.1 for 2D surface.

Case 3:

a0 =
σ2a4

6d2 , a1 =
σ2a5

6d2 , a2 =
σa4

d
, a3 =

σa5

d
, b1 =

a5b0

a4
, r =

a4q
48a2d2vb0

, p = −v +
qvσ2a4

12d2b0
.

Substituting these coefficients along with (3.6) in (4.3) we obtain following solution of the conformable
time fractional SRLW equation;

u3(x, t) =

σ2 + 6E2σ4(
de2a(x− tαv

α )σ−Eσ
)2 + 6Eσ3(

de2a(x− tαv
α )σ−Eσ

)2

 a4

6d2b0
,

where a, E, d, b0, a4, v, σ, α are constants and not zero (Figures 3–7).

AIMS Mathematics Volume 5, Issue 4, 3751–3761.



3757

Figure 3. The 3D and 2D surfaces of u3(x, t) for α = 0.2. By considering the values α = 0.2;
E = 0.5; σ = 0.4; d = 0.3; a = 0.5; b0 = 1; a4 = 0.5; v = 0.3; −13 < x < 13, −2 < t < 2 for
3D surface and −15 < x < 15; t = 0.2 for 2D surface.

Figure 4. The 3D and 2D surfaces of u3(x, t) for α = 0.4. By considering the values α = 0.4;
E = 0.5; σ = 0.4; d = 0.3; a = 0.5; b0 = 1; a4 = 0.5; v = 0.3; −13 < x < 13, −2 < t < 2 for
3D surface and −15 < x < 15; t = 0.2 for 2D surface.
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Figure 5. The 3D and 2D surfaces of u3(x, t) for α = 0.6. By considering the values α = 0.6;
E = 0.5; σ = 0.4; d = 0.3; a = 0.5; b0 = 1; a4 = 0.5; v = 0.3; −13 < x < 13, −2 < t < 2 for
3D surface and −15 < x < 15; t = 0.2 for 2D surface.

Figure 6. The 3D and 2D surfaces of u3(x, t) for α = 0.8. By considering the values α = 0.8;
E = 0.5; σ = 0.4; d = 0.3; a = 0.5; b0 = 1; a4 = 0.5; v = 0.3; −13 < x < 13, −2 < t < 2 for
3D surface and −15 < x < 15; t = 0.2 for 2D surface.

Figure 7. The 3D and 2D surfaces of u3(x, t) for α = 1. By considering the values α = 1;
E = 0.5; σ = 0.4; d = 0.3; a = 0.5; b0 = 1; a4 = 0.5; v = 0.3; −13 < x < 13, −2 < t < 2 for
3D surface and −15 < x < 15; t = 0.2 for 2D surface.
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5. Conclusion and Discussion

In this article, we have successfully applied the IBSEFM to the nonlinear conformable
time-fractional SRLW equation to investigate some new exact solutions. It has been observed that all
analytical solutions examined in this paper verify the nonlinear ordinary differential equation (4.2)
which is obtained from nonlinear comformable time-fractional SRLW equation under the terms of
wave transformation. All necessary computational calculations and graphs have been acquired by
using software mathematics programme. According to the figures, one can see that the formats of
travelling wave solutions in two and three dimensional surfaces are similar to the physical meaning of
results. If we take more values of coefficients, we can obtain more travelling wave solutions for this
model. This method is very reliable, efficient and submits new travelling wave solutions. Therefore,
the IBSEFM can be applied to the other nonlinear fractional differential models.
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