Research article Special Issues

Kink soliton phenomena of fractional conformable Kairat equations

  • Received: 18 September 2024 Revised: 11 January 2025 Accepted: 20 January 2025 Published: 14 February 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This paper presents a new scientific method to obtain the precise soliton solutions of the fractional conformable Kairat-Ⅱ (K-IIE) and Kairat-X (K-XE) equations using the Riccati-Bernoulli sub-ODE technique and the Bäcklund transformation. These methods seem most effective compared to the previously used methods as they demonstrate novelty in intensity and potential application. The solutions attained in form of trigonometric, hyperbolic, and rational forms can be used in areas of nonlinear optics, ferromagnetic dynamics, photonic crystals, and optical fibers theory. The most important findings are displayed in simple $ 2D $ graphs in order to illustrate the nature of these solutions. The use of the flexible fractional derivatives shows that the models are integrated and provides opportunities for studying differential geometry and curve equivalence. Similarly, the ease of the methods underscores applications in other nonlinear partial differential equations, affirming their versatility and importance for the upper level courses.

    Citation: M. Mossa Al-Sawalha, Safyan Mukhtar, Azzh Saad Alshehry, Mohammad Alqudah, Musaad S. Aldhabani. Kink soliton phenomena of fractional conformable Kairat equations[J]. AIMS Mathematics, 2025, 10(2): 2808-2828. doi: 10.3934/math.2025131

    Related Papers:

  • This paper presents a new scientific method to obtain the precise soliton solutions of the fractional conformable Kairat-Ⅱ (K-IIE) and Kairat-X (K-XE) equations using the Riccati-Bernoulli sub-ODE technique and the Bäcklund transformation. These methods seem most effective compared to the previously used methods as they demonstrate novelty in intensity and potential application. The solutions attained in form of trigonometric, hyperbolic, and rational forms can be used in areas of nonlinear optics, ferromagnetic dynamics, photonic crystals, and optical fibers theory. The most important findings are displayed in simple $ 2D $ graphs in order to illustrate the nature of these solutions. The use of the flexible fractional derivatives shows that the models are integrated and provides opportunities for studying differential geometry and curve equivalence. Similarly, the ease of the methods underscores applications in other nonlinear partial differential equations, affirming their versatility and importance for the upper level courses.



    加载中


    [1] J. F. Gomez-Aguilar, A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 132 (2017), 13. https://doi.org/10.1140/epjp/i2017-11293-3 doi: 10.1140/epjp/i2017-11293-3
    [2] A. Atangana, J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [3] O. Guner, A. Bekir, H. Bilgil, A note on exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201–208. https://doi.org/10.1515/anona-2015-0019 doi: 10.1515/anona-2015-0019
    [4] A. Bekir, O. Guner, Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method, Chin. Phys. B, 22 (2013), 110202. https://doi.org/10.1088/1674-1056/22/11/110202 doi: 10.1088/1674-1056/22/11/110202
    [5] A. Shehata, E. Kamal, H. Kareem, Solutions of the space-time fractional of some nonlinear systems of partial differential equations using modified Kudryashov method, Int. J. Pure Appl. Math., 101 (2015), 477–487.
    [6] H. Yepez-Mart­nez, F. Gomez-Aguilar, I. Sosa, J. Reyes, J. Torres-Jimenez, The Feng's first integral method applied to the nonlinear Mkdv space-time fractional partial differential equation, Revista Mexicana de F­sica, 62 (2016), 310–316.
    [7] F. Gomez, V. Morales, M. Taneco, Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation, Revista Mexicana de Fisica, 65 (2019), 82–88.
    [8] D. Baleanu, M. Inc, A. Yusuf, A. I. Aliyu, Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws, Adv. Differ. Equ., 2018 (2018), 46. https://doi.org/10.1186/s13662-018-1468-3 doi: 10.1186/s13662-018-1468-3
    [9] Y. Kai, Z. X. Yin, On the Gaussian traveling wave solution to a special kind of Schrodinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2022), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
    [10] Y. Kai, Z. X. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [11] Y. L. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashovs equation with third-order dispersion, Nonlinear Dyn., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [12] Y. Kai, L. K. Huang, Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis-Procesi model, Nonlinear Dyn., 111 (2023), 8687–8700. https://doi.org/10.1007/s11071-023-08290-4 doi: 10.1007/s11071-023-08290-4
    [13] Y. Kai, J. L. Ji, Z. X. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [14] X. H. Zhao, Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 149 (2024), 108895. https://doi.org/10.1016/j.aml.2023.108895 doi: 10.1016/j.aml.2023.108895
    [15] T. T. Jia, Y. J. Li, G. Yang, Novel Lax pair and many conservation laws to a (2+1)-dimensional generalized combined Calogero-Bogoyavlenskii-Schiff-type equation in biohydrodynamics, Appl. Math. Lett., 152 (2024), 109026. https://doi.org/10.1016/j.aml.2024.109026 doi: 10.1016/j.aml.2024.109026
    [16] B. A. Malomed, Basic fractional nonlinear-wave models and solitons, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34 (2024), 022102. https://doi.org/10.1063/5.0190039 doi: 10.1063/5.0190039
    [17] X. Z. Gao, D. Mihalache, M. R. Belic, J. C. Shi, D. W. Cao, X. Zhu, et al., Multi-hump solitons under fractional diffraction and inhomogeneous cubic nonlinearity in a quadratic potential, Phys. Lett. A, 527 (2024), 130018. https://doi.org/10.1016/j.physleta.2024.130018 doi: 10.1016/j.physleta.2024.130018
    [18] Y. L. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [19] J. Q. Xie, Z. K. Xie, H. D. Xu, Z. L. Li, W. Shi, J. N. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
    [20] Z. H. Zhou, Z. W. Li, W. Zhou, N. Chi, J. W. Zhang, Q. H. Dai, Resource-saving and high-robustness image sensing based on binary optical computing, Laser Photonics Rev., 2024, 2400936. https://doi.org/10.1002/lpor.202400936 doi: 10.1002/lpor.202400936
    [21] M. L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199 (1995), 169–172. https://doi.org/10.1016/0375-9601(95)00092-H doi: 10.1016/0375-9601(95)00092-H
    [22] E. J. Parkes, B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., 98 (1996), 288–300. http//doi.org/10.1016/0010-4655(96)00104-X doi: 10.1016/0010-4655(96)00104-X
    [23] Y. T. Gao, B. Tian, Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics, Comput. Phys. Commun., 133 (2001), 158–164. https://doi.org/10.1016/S0010-4655(00)00168-5 doi: 10.1016/S0010-4655(00)00168-5
    [24] Q. Wang, Y. Chen, H. Q. Zhan, A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos Soliton. Fract., 25 (2005), 1019–1028. https://doi.org/10.1016/j.chaos.2005.01.039 doi: 10.1016/j.chaos.2005.01.039
    [25] C. T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0
    [26] S. K. Liu, Z. T. Fu, S. D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289 (2001), 69–74. https://doi.org/10.1016/S0375-9601(01)00580-1 doi: 10.1016/S0375-9601(01)00580-1
    [27] S. Zhang, Exp-function method for constructing explicit and exact solutions of a lattice equation, Appl. Math. Comput., 199 (2008), 242–249. https://doi.org/10.1016/j.amc.2007.09.051 doi: 10.1016/j.amc.2007.09.051
    [28] C. Y. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrodinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
    [29] Z. X. Wang, C. X. Zhang, Z. Chen, W. M. Hu, K. Lu, L. Y. Ge, ACR-net: Learning high-accuracy optical flow via adaptive-aware correlation recurrent network, IEEE T. Circ. Syst. Vid. Tech., 34 (2024), 9064–9077. https://doi.org/10.1109/TCSVT.2024.3395636 doi: 10.1109/TCSVT.2024.3395636
    [30] T. A. A. Ali, Z. Xiao, H. B. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
    [31] Y. L. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-Ⅱ and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
    [32] M. Alammari, M. Iqbal, W. A. Faridi, M. A. Murad, R. Algethamie, F. A. H. Alomari, et al., Exploring the nonlinear behavior of solitary wave structure to the integrable Kairat-X equation, AIP Adv., 14 (2024), 115006. https://doi.org/10.1063/5.0240720 doi: 10.1063/5.0240720
    [33] S. Ghazanfar, N. Ahmed, M. S. Iqbal, A. Akgl, M. Bayram, M. De la Sen, Imaging ultra-sound propagation using the Westervelt equation by the generalized Kudryashov and modified Kudryashov methods, Appl. Sci., 12 (2022), 11813. https://doi.org/10.3390/app122211813 doi: 10.3390/app122211813
    [34] G. H. Tipu, W. A. Faridi, Z. Myrzakulova, R. Myrzakulov, S. A. AlQahtani, N. F. AlQahtani, et al., On optical soliton wave solutions of non-linear Kairat-X equation via new extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 655. https://doi.org/10.1007/s11082-024-06369-9 doi: 10.1007/s11082-024-06369-9
    [35] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017).
    [36] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrodinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [37] X. F. Yang, Z. C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equa., 1 (2015), 117–133. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [38] A. M. Wazwaz, Extended (3+1)-dimensional Kairat-Ⅱ and Kairat-X equations: Painleve integrability, multiple soliton solutions, lump solutions, and breather wave solutions. Int. J. Numer. Meth. Fl., 34 (2024), 2177–2194. https://doi.org/10.1108/HFF-01-2024-0053 doi: 10.1108/HFF-01-2024-0053
    [39] Y. W. Zhang, Solving STO and KD equations with modified Riemann-Liouville derivative using improved ($G/G'$)-expansion function method, Int. J. Appl. Math., 45 (2015), 16–22.
    [40] D. C. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325. https://doi.org/www.researchgate.net/publication/267017252
    [41] M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(203) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog