Research article

Extrapolation methods for solving the hypersingular integral equation of the first kind

  • Received: 26 November 2024 Revised: 22 January 2025 Accepted: 11 February 2025 Published: 14 February 2025
  • MSC : 33F05, 65D05

  • Hypersingular integral equations have garnered extensive attention in the context of boundary element methods, particularly within natural boundary element methods. The asymptotic expansion of the composite rectangular rule's error function in Hadamard finite-part integrals yields a hypersingular kernel of $ 1/\sin^2(x-s) $. An extrapolation algorithm was developed to address this issue. To solve the hypersingular integral equation, we employed superconvergence points as collocation points, thereby constructing an extrapolation algorithm for hypersingular integral equations and establishing its convergence rate. A numerical example was provided to validate the efficacy of the method, corroborated by theoretical results that demonstrate the algorithm's effectiveness.

    Citation: Qian Ge, Jin Li. Extrapolation methods for solving the hypersingular integral equation of the first kind[J]. AIMS Mathematics, 2025, 10(2): 2829-2853. doi: 10.3934/math.2025132

    Related Papers:

  • Hypersingular integral equations have garnered extensive attention in the context of boundary element methods, particularly within natural boundary element methods. The asymptotic expansion of the composite rectangular rule's error function in Hadamard finite-part integrals yields a hypersingular kernel of $ 1/\sin^2(x-s) $. An extrapolation algorithm was developed to address this issue. To solve the hypersingular integral equation, we employed superconvergence points as collocation points, thereby constructing an extrapolation algorithm for hypersingular integral equations and establishing its convergence rate. A numerical example was provided to validate the efficacy of the method, corroborated by theoretical results that demonstrate the algorithm's effectiveness.



    加载中


    [1] L. C. Andrews, Special functions of mathematics for engineers, 2 Eds., New York: McGraw-Hill Inc., 1992.
    [2] U. J. Choi, S. W. Kim, B. I. Yun, Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals, Int. J. Numer. Meth. Eng., 61 (2004), 496–513. http://dx.doi.org/10.1002/nme.1077 doi: 10.1002/nme.1077
    [3] K. Diethdm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation, Approx. Theory Appl., 11 (1995), 78–89. http://dx.doi.org/10.1007/BF02836832 doi: 10.1007/BF02836832
    [4] Q. K. Du, Evaluations of certain hypersingular integrals on interval, Int. J. Numer. Meth. Eng., 51 (2001), 1195–1210. http://dx.doi.org/10.1002/nme.218 doi: 10.1002/nme.218
    [5] D. Elliott, E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numer. Math., 77 (1997), 453–465. http://dx.doi.org/10.1007/s002110050295 doi: 10.1007/s002110050295
    [6] H. Feng, X. P. Zhang, J. Li, Numerical solution of a certain hypersingular integral equation of the first kind, BIT Numer. Math., 51 (2011), 609–630. http://dx.doi.10.1007/s10543-010-0305-1 doi: 10.1007/s10543-010-0305-1
    [7] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Comput. Appl. Math., 163 (2004), 127–138. http://dx.doi.org/10.1016/J.CAM.2003.08.059 doi: 10.1016/J.CAM.2003.08.059
    [8] H. D. Han, X. N. Wu, Artificial boundary method, New York: Springer, 2013.
    [9] C. Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Meth. Eng., 44 (1999), 205–214. https://dx.doi.org/10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8 doi: 10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8
    [10] N. I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44 (1985), 191–198. http://dx.doi.org/10.2307/2007802 doi: 10.2307/2007802
    [11] P. Kim, U. C. Jin, Two trigonometric quadrature formulae for evaluating hypersingular integrals, Int. J. Numer. Meth. Eng., 56 (2003), 469–486. http://dx.doi.org/10.1002/nme.582 doi: 10.1002/nme.582
    [12] P. Linz, On the approximate computation of certain strongly singular integrals, Computing, 35 (1985), 345–353. http://dx.doi.org/10.1007/BF02240199 doi: 10.1007/BF02240199
    [13] C.B. Liem, T. Shih, The splitting extrapolation method, Singapore: World Scientific, 1995.
    [14] J. Li, J. M. Wu, D. H. Yu, Generalized extrapolation for computation of hypersingular integrals in boundary element methods, CMES-Comp. Model. Eng., 42 (2009), 151–176. https://dx.doi.org/10.3970/cmes.2009.042.151 doi: 10.3970/cmes.2009.042.151
    [15] J. Li, X. P. Zhang, D. H. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56 (2013), 1647–1660. http://dx.doi.org/10.1007/s11425-013-4593-1 doi: 10.1007/s11425-013-4593-1
    [16] J. Li, H. X. Rui, Error expansion of trapezoidal rule for certain two-dimensional Cauchy principal value integrals, Comput. Math. Appl., 74 (2017), 2608–2637. http://dx.doi.10.1016/j.camwa.2017.09.025 doi: 10.1016/j.camwa.2017.09.025
    [17] J. Li, H. X. Rui, D. H. Yu, Trapezoidal rule for computing supersingular integral on a circle, J. Sci. Comput., 66 (2016), 740–760. http://dx.doi.org/10.1007/s10915-015-0042-3 doi: 10.1007/s10915-015-0042-3
    [18] J. Li, H. X. Rui, Extrapolation methods for computing Hadamard finite-part integral on finite intervals, J. Comput. Math., 37 (2019), 261–277. http://dx.doi.org/10.4208/jcm.1802-m2017-0027 doi: 10.4208/jcm.1802-m2017-0027
    [19] J. Li, H. Y. Huang, Q. L. Zhao, Error expansion of piecewise constant interpolation rule for certain two-dimensional Cauchy principal value integrals, Comput. Math. Appl., 72 (2016), 2119–2142. http://dx.doi.10.1016/j.camwa.2016.08.001 doi: 10.1016/j.camwa.2016.08.001
    [20] J. Li, The extrapolation methods based on Simpson's rule for computing supersingular integral on Interval. Appl. Math. Comput., 310 (2017), 204–214. http://dx.doi.org/10.1016/j.amc.2017.04.003 doi: 10.1016/j.amc.2017.04.003
    [21] T. Lu, Y. Huang, A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equality of the second kind, J. Math. Anal. Appl., 282 (2003), 56–62. http://dx.doi.org/10.1016/S0022-247X(02)00369-4 doi: 10.1016/S0022-247X(02)00369-4
    [22] T. Lu, Y. Huang, Extrapolation method for solving weakly singular nonlinear Volterra integral equations of the second kind, J. Math. Anal. Appl., 324 (2006), 225–237. https://doi.org/10.1016/j.jmaa.2005.12.013 doi: 10.1016/j.jmaa.2005.12.013
    [23] I. K. Lifanov, L. N. Poltavskii, M. G. M. Vainikko, Hypersingular integral equations and their applications, Boca Raton: CRC Press, 2004.
    [24] G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50 (1994), 9–31. https://doi.org/10.1016/0377-0427(94)90287-9 doi: 10.1016/0377-0427(94)90287-9
    [25] J. M. Wu, W. W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval, Numer. Math., 109 (2008), 143–165. http://dx.doi.org/10.1007/s00211-007-0125-7 doi: 10.1007/s00211-007-0125-7
    [26] J. M. Wu, W. W. Sun, The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals, Numer. Math., 102 (2005), 343–363. http://dx.doi.org/10.1007/s00211-005-0647-9 doi: 10.1007/s00211-005-0647-9
    [27] J. M. Wu, Y. Lv, A superconvergence result for the second order Newton-Cotes formula for certain finite part integrals, IMA J. Numer. Anal., 25 (2005), 253–263. https://doi.org/10.1093/imanum/drh025 doi: 10.1093/imanum/drh025
    [28] J. Li, Y. Zhang, X. Zhang, Gaussian quadrature for certain two-dimensional hypersingular integrals, J. Comput. Appl. Math., 451 (2024), 116102. http://dx.doi.org/10.1016/j.cam.2024.116102 doi: 10.1016/j.cam.2024.116102
    [29] D. H. Yu, Natural boundary integrals method and its applications, Dordrecht: Springer, 2002.
    [30] D. H. Yu, The approximate computation of hypersingular integrals on interval, Numer. Math. A J. Chinese Univ. (English Series), 1 (1992), 114–127. http://dx.doi.org/10.1002/ijc.25958 doi: 10.1002/ijc.25958
    [31] Y. T. Zhou, X. Li, D. H. Yu, Integral method for contact problem of bonded plane material with arbitrary cracks, CMES-Comp. Model. Eng., 36 (2008), 147–172. http://dx.doi.org/10.3970/cmes.2008.036.147 doi: 10.3970/cmes.2008.036.147
    [32] X. P. Zhang, J. M. Wu, D. H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855–876. http://dx.doi.org/10.1080/00207160802226517 doi: 10.1080/00207160802226517
    [33] A. Sidi, Comparison of some numerical quadrature formulas for weakly singular periodic Fredholm integral equations, Computing, 43 (1989), 159–170. http://dx.doi.org/10.1007/BF02241859 doi: 10.1007/BF02241859
    [34] A. Sidi, Compact numerical quadrature formulas for hypersingular integrals and integral equations, J. Sci. Comput., 54 (2013), 145–176. http://dx.doi.org/10.1007/s10915-012-9610-y doi: 10.1007/s10915-012-9610-y
    [35] A. Sidi, Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization, Appl. Numer. Math., 81 (2014), 30–39. http://dx.doi.org/10.1016/j.apnum.2014.02.011 doi: 10.1016/j.apnum.2014.02.011
    [36] A. Sidi, Richardson extrapolation on some recent numerical quadrature formulas for singular and hypersingular integrals and its study of stability, J. Sci. Comput., 60 (2014), 141–159. https://doi.org/10.1007/s10915-013-9788-7 doi: 10.1007/s10915-013-9788-7
    [37] A. Sidi, M. Israeli, Quadrature methods for periodic singular and weakly singular Fredholm integral equations, J. Sci. Comput., 3 (1988), 201–231. http://dx.doi.org/10.1007/BF01061258 doi: 10.1007/BF01061258
    [38] G. Rzadkowski, E. Tohidi, A fourth order product integration rule by using the generalized Euler-Maclaurin summation formula, J. Comput. Appl. Math., 335 (2017), 334–348. http://dx.doi.org/10.1016/j.cam.2017.12.017 doi: 10.1016/j.cam.2017.12.017
    [39] G. Rzadkowski, E. Tohidi, Convergence analysis of the generalized Euler-Maclaurin quadrature rule for solving weakly singular integral equations, Filomat, 33 (2019), 1801–1815. http://dx.doi.org/10.2298/FIL1906801R doi: 10.2298/FIL1906801R
    [40] E. Strelnikova, N. Choudhary, K. Degtyariov, D. Kriutchenko, I. Vierushkin, Boundary element method for hypersingular integral equations: Implementation and applications in potential theory, Eng. Anal. Bound. Elem., 169 (2024), 105999. http://dx.doi.org/10.1016/j.enganabound.2024.105999 doi: 10.1016/j.enganabound.2024.105999
    [41] S. Gupta, A. Kayal, M. Mandal, Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods, Appl. Math. Comput., 487 (2025), 129093. http://dx.doi.org/10.1016/j.amc.2024.129093 doi: 10.1016/j.amc.2024.129093
    [42] R. Y. Chen, Y. Li, Y. X. Zhou, On computation of finite-part integrals of highly oscillatory functions, J. Comput. Appl. Math., 460 (2024), 116334. http://dx.doi.org/10.1016/j.cam.2024.116334 doi: 10.1016/j.cam.2024.116334
    [43] T. Mal, S. Kundu, M. H. Meylan, S. Gupta, Modal analysis of a submerged elastic disk: A hypersingular integral equation approach, Phys. Fluids, 36 (2024), 047131. http://dx.doi.org/10.1063/5.0194311 doi: 10.1063/5.0194311
    [44] K. M. Shadimetov, D. M. Akhmedov, Numerical integration formulas for hypersingular integrals, Numer. Math.-Theory Me., 17 (2024), 805–826. http://dx.doi.org/10.4208/nmtma.OA-2024-0028 doi: 10.4208/nmtma.OA-2024-0028
    [45] J. Hoskins, M. Rachh, B. W. Wu, On quadrature for singular integral operators with complex symmetric quadratic forms, Appl. Comput. Harmon. Anal., 74 (2024), 740–760. http://dx.doi.org/10.1016/j.acha.2024.101721 doi: 10.1016/j.acha.2024.101721
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(174) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog