In this paper, we present an efficient method for computing the action of matrix $ \varphi $-functions. Our approach is based on a scaling and recursing procedure and incorporates a shifting technique as a preprocessing step to enhance efficiency. We conduct a forward error analysis to determine the optimal scaling parameter and polynomial degree for achieving the desired accuracy. Numerical comparisons with existing algorithms demonstrate that the proposed algorithm performs well in terms of both accuracy and efficiency.
Citation: Xianan Lu, Dongping Li, Zhixin Zhao. The shift-based scaling and recursing algorithm for evaluating the action of the matrix $ \varphi $-functions[J]. AIMS Mathematics, 2025, 10(2): 2854-2868. doi: 10.3934/math.2025133
In this paper, we present an efficient method for computing the action of matrix $ \varphi $-functions. Our approach is based on a scaling and recursing procedure and incorporates a shifting technique as a preprocessing step to enhance efficiency. We conduct a forward error analysis to determine the optimal scaling parameter and polynomial degree for achieving the desired accuracy. Numerical comparisons with existing algorithms demonstrate that the proposed algorithm performs well in terms of both accuracy and efficiency.
[1] |
M. Hochbruck, A. Ostermann, Exponential Integrators, Acta Numer., 19 (2010), 209–286. https://doi.org/10.1017/S0962492910000048 doi: 10.1017/S0962492910000048
![]() |
[2] | B. V. Minchev, W. M. Wright, A review of exponential integrators for first order semi-linear problems, Tech. report 2/05, Department of Mathematics, NTNU, 2005. https://cds.cern.ch/record/848122 |
[3] |
A. H. Al-Mohy, N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), 970–989. https://doi.org/10.1137/09074721X doi: 10.1137/09074721X
![]() |
[4] |
E. Defez, J. Ibáñez, J. Sastre, J. Peinado, P. Alonso, A new efficient and accurate spline algorithm for the matrix exponential computation, J. Comput. Appl. Math., 337 (2018), 354–365. https://doi.org/10.1016/j.cam.2017.11.029 doi: 10.1016/j.cam.2017.11.029
![]() |
[5] |
N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), 1179–1193. https://doi.org/10.1137/090768539 doi: 10.1137/090768539
![]() |
[6] |
Y. Y. Lu, Computing a matrix function for exponential integrators, J. Comput. Appl. Math., 161 (2003), 203–216. https://doi.org/10.1016/j.cam.2003.08.006 doi: 10.1016/j.cam.2003.08.006
![]() |
[7] |
C. Moler, C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45 (2003), 3–49. https://doi.org/10.1137/S00361445024180 doi: 10.1137/S00361445024180
![]() |
[8] |
I. Najfeld, T. F. Havel, Derivatives of the matrix exponential and their computation, Adv. Appl. Math., 16 (1995), 321–375. https://doi.org/10.1006/aama.1995.1017 doi: 10.1006/aama.1995.1017
![]() |
[9] |
J. Sastre, J. Ibáñez, E. Defez, P. Ruiz, Efficient orthogonal matrix polynomial based method for computing matrix exponential, Appl. Math. Comput., 217 (2011), 6451–6463. https://doi.org/10.1016/j.amc.2011.01.004 doi: 10.1016/j.amc.2011.01.004
![]() |
[10] |
J. Sastre, J. Ibáñez, E. Defez, P. Ruiz, New scaling-squaring Taylor algorithms for computing the matrix exponential, SIAM J. Sci. Comput., 37 (2015), 439–455. https://doi.org/10.1137/090763202 doi: 10.1137/090763202
![]() |
[11] |
B. Skaflestad, W. M. Wright, The scaling and modified squaring method for matrix functions related to the exponential, Appl. Numer. Math., 59 (2009), 783–799. https://doi.org/10.1016/j.apnum.2008.03.035 doi: 10.1016/j.apnum.2008.03.035
![]() |
[12] |
R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM J. Numer. Anal., 14 (1977), 600–610. https://doi.org/10.1137/0714039 doi: 10.1137/0714039
![]() |
[13] |
A. H. Al-Mohy, N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488–511. https://doi.org/10.1137/100788860 doi: 10.1137/100788860
![]() |
[14] |
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), 209–228. https://doi.org/10.1137/0729014 doi: 10.1137/0729014
![]() |
[15] |
M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, Comparison of software for computing the action of the matrix exponential, BIT Numer. Math., 54 (2014), 113–128. http://doi.org/10.1007/s10543-013-0446-0 doi: 10.1007/s10543-013-0446-0
![]() |
[16] |
M. Caliari, P. Kandolf, A. Ostermann, S. Rainer, The leja method revisited: backward error analysis for the matrix exponential, SIAM J. Sci. Comput., 38 (2016), A1639–A1661. https://doi.org/10.1137/15M1027620 doi: 10.1137/15M1027620
![]() |
[17] |
R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw., 24 (1998), 130–156. https://doi.org/10.1145/285861.285868 doi: 10.1145/285861.285868
![]() |
[18] |
D. P. Li, Y. H. Cong, Approximation of the linear combination of $\varphi$-functions using the block shift-and-invert Krylov subspace method, J. Appl. Anal. Comput., 4 (2017), 1402–1416. https://doi.org/10.11948/2017085 doi: 10.11948/2017085
![]() |
[19] |
S. Gaudrealt, G. Rainwater, M. Tokman, KIOPS: A fast adaptive Krylov subspace solver for exponential integrators, J. Comput. Phys., 372 (2018), 236–255. https://doi.org/10.1016/j.jcp.2018.06.026 doi: 10.1016/j.jcp.2018.06.026
![]() |
[20] |
J. Niesen, W. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators, ACM Trans. Math. Software, 38 (2012), Article 22. https://doi.org/10.1145/2168773.2168781 doi: 10.1145/2168773.2168781
![]() |
[21] |
D. P. Li, S. Y. Yang, J. M. Lan, Efficient and accurate computation for the $\varphi$-functions arising from exponential integrators, Calcolo, 59 (2022), 1–24. http://doi.org/10.1007/s10092-021-00453-2 doi: 10.1007/s10092-021-00453-2
![]() |
[22] |
N. J. Higham, F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), 1185–1201. https://doi.org/10.1137/S0895479899356080 doi: 10.1137/S0895479899356080
![]() |
[23] |
T. A. Davis, Y. F. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), Article 1. https://doi.org/10.1145/2049662.2049663 doi: 10.1145/2049662.2049663
![]() |
[24] |
M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), 1552–1574. https://doi.org/10.1137/S1064827595295337 doi: 10.1137/S1064827595295337
![]() |
[25] | T. Penzl, LYAPACK: A MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems, users' guide (Version 1.0), 1999. https://netlib.org/lyapack/guide.pdf |