
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(2): 2854–2868.
DOI: 10.3934/math.2025133
Received: 09 November 2024
Revised: 21 January 2025
Accepted: 05 February 2025
Published: 17 February 2025

Research article

The shift-based scaling and recursing algorithm for evaluating the action of
the matrix ϕ-functions

Xianan Lu, Dongping Li*and Zhixin Zhao*

School of Mathematics, Changchun Normal University, 677 Changji North Road, Changchun, MO
130032, China

* Correspondence: Email: lidp@ccsfu.edu.cn; jczzx10@163.com; Tel: +8613844142920.

Abstract: In this paper, we present an efficient method for computing the action of matrix ϕ-functions.
Our approach is based on a scaling and recursing procedure and incorporates a shifting technique as a
preprocessing step to enhance efficiency. We conduct a forward error analysis to determine the optimal
scaling parameter and polynomial degree for achieving the desired accuracy. Numerical comparisons
with existing algorithms demonstrate that the proposed algorithm performs well in terms of both
accuracy and efficiency.

Keywords: ϕ-functions; scaling and recursing method; shifting technique; Taylor series; forward
error analysis; exponential integrators
Mathematics Subject Classification: 65L05, 65F10, 65F30

1. Introduction

In this paper, we develop efficient numerical methods for evaluating the product of exponential-like
matrix functions with a vector

ϕl(A)b, l ∈ N, (1.1)

where A ∈ CN×N is a large, sparse matrix; b ∈ CN is a vector; and

ϕ0(z) = ez, ϕl(z) =
∫ 1

0
e(1−t)z t l−1

(l −1)!
dt, l = 1,2, . . . . (1.2)

These functions satisfy the recursive relation:

ϕk−1(z) = zϕk(z)+
1

(k−1)!
, k = 1,2, . . . . (1.3)
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This problem plays a key role in the implementation of exponential integrators, a competitive tool
for solving the solution of large stiff ordinary differential equations (ODEs), see [1, 2]. Exponential
integrators employ exponential-like matrix functions, commonly referred to as ϕ-functions, within
their formulation. The fast and accurate computation of the action of ϕ-functions directly determines
the efficiency and stability of exponential integrators.

In many practical applications, the matrix A is large and sparse making it infeasible to compute
ϕl(A) explicitly by direct methods as in [3–12] and then multiply by b. Instead, one seeks to
approximate ϕl(A)b using a numerical method based on matrix-vector products. In recent years,
several numerical algorithms following this approach have emerged, with the action of matrix
exponential on a vector being the most widely studied case, see [13–16]. Since the ϕ-functions can be
reformulated in terms of an augmented matrix exponential (see [13, 14, 17]), the action of ϕ-functions
can be computed by applying the matrix exponential to a vector. The expmv algorithm by Al-Mohy and
Higham [13] is considered one of the most effective methods for this purpose. Some direct approaches
have also been developed for general ϕ-functions. Typical methods include Krylov methods [14, 17–
20], the scaling and recursing method based on a truncated Taylor series [21].

In this paper, we adopt a different strategy to implement the scaling and recursing method, fully
integrating the shifting technique to enhance the algorithm’s computational efficiency. We provide a
forward error analysis that facilitates the selection of the scaling parameter s and the Taylor degree m
to achieve a prescribed accuracy while minimizing the algorithm’s computational cost.

The structure of this article is outlined as follows. Section 2 presents a brief overview of existing
scaling and recursing methods. Section 3 introduces a shift-based scaling and recursing method,
including forward error analysis and the selection of the scaling parameter s and the Taylor degree m.
Section 4 demonstrates the algorithm’s effectiveness through numerical experiments. Finally, Section
5 concludes with a summary of the main findings of the paper.

2. The existing scaling and recursing method for ϕl(A)b

In this section, we briefly review the scaling and recursing method proposed in [21], which is based
on the recursive formula:

ϕl(kY )b = (1− 1
k
)l

ϕ0(Y )ϕl((k−1)Y )b+
l

∑
j=1

fk, jϕ j(Y )b, k = 2,3, . . . ,s, (2.1)

where fk, j = (1− 1
k )

l− j(1
k )

j 1
(l− j)! and Y = A/s, with s being a nonnegative integer. If ∥Y∥ sufficiently

small, ϕl(Y ) can be well-approximated by its truncated Taylor series of degree m:

ϕl(Y )≈ Tl,m(Y ) =
m

∑
k=0

Y k

(l + k)!
.

By replacing ϕl(Y )b by bl := Tl,m(Y )b and using the relation (1.3), the other terms ϕk(Y )b for k < l are
sequentially approximated as follows:

bk = Y bk+1 +
1
k!

b, k = l −1, l −2, · · · ,1. (2.2)

AIMS Mathematics Volume 10, Issue 2, 2854–2868.



2856

Essentially, bk represents the product of the truncated Taylor series of degree m+ l−k for ϕk(Y ) and b.
To explore the sparsity of Y , the vector bl = Tl,m(Y )b should be evaluated using matrix-vector products
involving Y . Algorithm 1 presents a procedure for this task.

Algorithm 1 The algorithm computes bl = Tl,m(Y )b.

Require: Y ∈ CN×N , b ∈ CN , l and m.
1: bl = b/l!;
2: for k = 1 : m do
3: Compute b = Y b/(l + k);
4: Compute bl = bl +b;
5: end for

Ensure: bl .

Once the vectors b1,b2, . . . ,bl are computed, the approximation ψs to ϕl(A)b is obtain by applying
the recursion:

ψk = (1− 1
k
)lT0,m+l(Y )ψk−1 + ck, k = 2,3, · · · ,s. (2.3)

Here, ψ1 := bl , ck :=
l
∑
j=1

fk, jb j, and T0,m+l(Y ) is the truncated Taylor approximation of degree m+ l

for eY . The total computational cost of the method is s(m+ l)−1 matrix-vector products for s > 1.
In [21], the authors partially employ the shifting technique as a preprocessing step to enhance the

method’s performance. The shifting approach can often reduce the norm of matrix A, thereby yielding
lower Taylor degree m or smaller scaling factor s. For the matrix exponential, such a shift can be
incorporated using the property eA = eµeA−µI , where µ is a given shift. However, this property is
unavailable for more general ϕ-functions. Consequently, the shift-based approximation to ϕl(A)b
becomes

ψk = (1− 1
k
)leµ/sT0,m+l(Y −µI/s)ψk−1 + ck, k = 2,3, · · · ,s. (2.4)

Due to the lack of a shifted property for ϕl(Y ), they had to use a truncated Taylor series with a larger
degree m̂ than m to approximate ϕl(Y ) and thereby compensate for the loss of accuracy. If m̂ is
significantly greater than m, then this approach can result in additional matrix-vector products even
leading to algorithmic instability.

In this paper, we propose an alternative strategy for evaluating ϕl(A)b. Our approach emphasizes a
novel method for assessing ϕk(Y ) for k = 1,2, . . . , l. A significant advantage of this new method is its
ability to fully incorporate the shifting technique into the evaluation process.

3. The shift-based scaling and recursing method for ϕl(A)b

We now derive a new algorithm based on the scaling and recursing formula (2.1). Let Y = A/s and
Tm(Y ) denote the truncated Taylor series of order m for eY , that is,

Tm(Y ) =
m

∑
k=0

Y k

k!
. (3.1)
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The error in Tm(Y ) is given by

hm(Y ) := eY −Tm(Y ) =
∞

∑
k=m+1

Y k

k!
. (3.2)

If µ ∈ R is a chosen shift satisfying ∥A−µI∥ ≤ ∥A∥, and let ν = µ/s, then the matrix exponential eY

can also be approximated via the matrix Y −νI as follows:

eνTm(Y −νI). (3.3)

From definition (1.2), we can approximate ϕ j(Y ) by

ϕ̃ j(Y ) =
∫ 1

0
e(1−t)νTm ((1− t)(Y −νI))

t j−1

( j−1)!
dt. (3.4)

Let

h̃m(Y ) =
∞

∑
k=m+1

1
k!
∥Y k∥. (3.5)

Then, the associated error satisfies

∥ϕ j(Y )− ϕ̃ j(Y )∥=
∫ 1

0
e(1−t)ν∥e(1−t)(Y−νI)−Tm((1− t)(Y −νI))∥ t j−1

( j−1)!
dt

=
∫ 1

0
e(1−t)ν∥hm ((1− t)(Y −νI))∥ t j−1

( j−1)!
dt

≤ 1
( j−1)!

h̃m(Y −νI)
∫ 1

0
e(1−t)νdt

≤ 1
( j−1)!

ϕ1(v)h̃m(Y −νI).

(3.6)

By replacing the functions ϕ j(Y ) in (2.1) with the approximations ϕ̃ j(Y ) for j = 0,1 . . . , l,
respectively, we obtain the shift-based scheme for computing ϕl(A)b by

φk = (1− 1
k
)leνTm(Y −νI)φk−1 + c̃k, k = 2,3, · · · ,s, (3.7)

where c̃k =
l
∑
j=1

fk, jϕ̃ j(Y )b and φ1 = ϕ̃l(Y )b. If ν = 0, then scheme (3.7) becomes to a case without

shifting.
The following result shows how the final error in the scheme (3.7) is affected by the initial errors in

approximating ϕ j(Y ) for j = 0,1, . . . , l.

Theorem 1. Let A ∈ CN×N , ν ∈ R, and Y = A/s for a nonnegative integer s, and assume that
h̃m (Y −νI)≤ ε . Then, the error Es of approximating ϕl(A)b by φs, generated by the recursion (3.7) in
exact arithmetic, satisfies

∥Es∥ ≤C0∥b∥(1+ eν
ε)s−1

(
C1eν +

1
(l −1)!

ϕ1(ν)

)
(

s
l +1

+1)ε, (3.8)

where C0 = max
1≤k≤s

{∥ekY∥}, C1 = max
1≤k≤s

{∥ϕl(kY )∥}.
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Proof. Let yk = ϕl(kY )b and ck =
l
∑
j=1

fk, jϕ j(Y )b. We can rewrite (2.1) as

yk = (1− 1
k
)l

ϕ0(Y )yk−1 + ck, k = 2,3, . . . ,s. (3.9)

Let Ek = yk − φk and ek = ck − c̃k denote the differences between the numerical and exact solutions.
By subtracting (3.7) from the exact scheme, we obtain the error recursion

Ek =(1− 1
k
)leν (ϕ0(Y −νI)yk−1 −Tm(Y −νI)φk−1)+ ek

=(1− 1
k
)leν (ϕ0(Y −νI)yk−1 −Tm(Y −νI)yk−1 +Tm(Y −νI)yk−1 −Tm(Y −νI)φk−1)+ ek

=(1− 1
k
)leν (hm(Y −νI)yk−1 +Tm(Y −νI)Ek−1)+ ek.

(3.10)

This recursion yields

Es =

(
1
s

)l

e(s−1)νTm(Y −νI)s−1E1+
s

∑
i=2

e(s−i)νTm(Y −νI)s−i

((
i−1

s

)l

eνhm(Y −νI)yi−1 +

(
i
s

)l

ei

)
.

(3.11)
Taking norm and utilizing the following inequalities

∥ekνTm(Y −νI)k∥=∥ekν
(
eY−νI −hm(Y −νI)

)k ∥

≤
k

∑
i=0

(
k
i

)
∥e(k−i)Y∥ · ∥eνhm(Y −νI)∥i

≤C0

k

∑
i=0

(
k
i

)(
eν h̃m(Y −νI)

)i

≤C0(1+ eν h̃m(Y −νI))k,

(3.12)

∥E1∥= ∥ϕl(Y )b− ϕ̃l(Y )b∥

≤ 1
(l −1)!

ϕ1(ν)h̃m(Y −νI)∥b∥,
(3.13)

and

∥ei∥ ≤
l

∑
j=1

fi, j

( j−1)!
ϕ1(ν)h̃m(Y −νI)∥b∥

≤ 1
(l −1)!

ϕ1(ν)h̃m(Y −νI)∥b∥,
(3.14)

we have

∥Es∥ ≤C0∥b∥(1+ eν h̃m(Y −νI))s−1

(
C1eν

s−1

∑
i=1

(
i
s

)l

+
1

(l −1)!
ϕ1(ν)

s

∑
i=1

(
i
s

)l
)

h̃m(Y −νI)

≤C0∥b∥(1+ eν h̃m(Y −νI))s−1
(

C1eν +
1

(l −1)!
ϕ1(ν)

) s

∑
i=1

(
i
s

)l

h̃m(Y −νI)

≤C0∥b∥(1+ eν h̃m(Y −νI))s−1
(

C1eν +
1

(l −1)!
ϕ1(ν)

)
(

s
l +1

+1)h̃m(Y −νI).

(3.15)
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The assumption on h̃m(Y −νI) concludes the proof. □

In particular, if A is normal with negative eigenvalues λi, 1 ≤ i ≤ N, then under the 2-norm, we have

C0 = max
1≤k≤s

{∥ekY∥2}= max{ekλi/s,1 ≤ k ≤ s,1 ≤ i ≤ N}< 1,

C1 = max
1≤k≤s

{∥ϕl(kY )∥2}= max{ϕl(kλi/s),1 ≤ k ≤ s,1 ≤ i ≤ N}< 1
(l −1)!

,

and (3.8) yields

∥Es∥2 ≤
1

(l −1)!
∥b∥2(1+ eν

ε)s−1 (eν +ϕ1(ν))(
s

l +1
+1)ε.

Theorem 1 shows that if the initial error bound h̃m (Y −νI) is sufficiently small, then the final error
will also remain small.

3.1. Implementation issues of the method

In this subsection, we present some implementation details of the scheme in (3.7). Let fk =
( fk,1, fk,2, . . . , fk,l)

T denote the vector with elements fk, j introduced in (2.1). We define

R = [b,(Y −νI)b,
1
2!
(Y −νI)2b, · · · , 1

m!
(Y −νI)mb] ∈ CN×(m+1), (3.16)

and W = (wi, j) ∈ C(m+1)×l with elements

wi, j =
1
j!

∫ 1

0
(1− t)ie(1−t)νt jdt, i = 0,1, . . . ,m, j = 0,1, . . . , l −1. (3.17)

Let
F = R ·W. (3.18)

Then, the initial value φ1 and the vector c̃k in (3.7) can be equivalently expressed as

φ1 = F(:, l), c̃k = F · fk, (3.19)

where F(:, l) denotes the l-th column of F .
Another point to consider is the computation of the matrix W . For ν = 0, the elements wi, j can be

conveniently computed using the MATLAB function beta. However, for ν , 0, we employ a recursive
method in combination with a quadrature rule, which is typically more efficient than relying solely on
the quadrature rule.

Lemma 1. Let wi, j be defined as in (3.17), and let ν be a non-zero constant. Then, the following
identities hold:
(a) wi,0 =

1
ν
(eν − iwi−1,0), i = 1,2, . . . ,m;

(b) w0, j =
1
ν
(w0, j−1 − 1

j!), j = 1,2, . . . , l −1;
(c) wi, j =

1
ν
(wi, j−1 − iwi−1, j), i = 1,2, · · · ,m, j = 1,2, · · · , l −1;

(d) wi, j =
1

i+1(wi+1, j−1 −νwi+1, j), i = 1,2, · · · ,m, j = 1,2, · · · , l −1.

AIMS Mathematics Volume 10, Issue 2, 2854–2868.



2860

Proof. The proof follows from the integration by parts formula. For simplicity, we provide the proofs
for cases (c) and (d), omitting those for cases (a) and (b). For case (c), the integration by parts formula
is expressed as follows:

wi, j =− 1
j!ν

∫ 1

0
t j(1− t)ideν(1−t)

=− 1
j!ν

(
t j(1− t)ieν(1−t)|10 −

∫ 1

0
eνtdt j(1− t)i

)
=

1
j!ν

∫ 1

0
eν(1−t) ( jt j−1(1− t)i − it j(1− t)i−1)dt

=
1
ν
(wi, j−1 − iwi−1, j).

(3.20)

On the other hand, applying integration by parts yields

wi, j =
1
j!

∫ 1

0
(1− t)ieν(1−t)t jdt

=
1

j!(i+1)

∫ 1

0
eν(1−t)t jd(1− t)i+1

=
1

j!(i+1)

(
eν(1−t)t j(1− t)i+1|10 −

∫ 1

0
(1− t)i+1deν(1−t)t j

)
=− 1

j!(i+1)

∫ 1

0

(
−νeν(1−t)(1− t)i+1t j + jeν(1−t)(1− t)i+1t j−1

)
dt

=
1

i+1
(wi+1, j−1 −νwi+1, j).

(3.21)

□

Remark 1. Applying the identities (a), (b), and (c) to calculate the elements of matrix W is theoretically
straightforward; however, this approach often proves to be numerically unstable in practice. To address
this, we employ identity (d) for these calculations. This requires first computing the elements of the last
row of matrix W, which we achieve using a quadrature rule.

In practice, selecting the shift parameter µ is a nontrivial task. We set the shift µ = trace(A)/N,
as used in [13], which has been empirically shown to typically reduce the norm of the matrix A−µI.
However, if ∥A−µI∥ ≥ ∥A∥, then the shift is unnecessary.

In Algorithm 2, we provide a brief outline of the process for computing ϕl(A)b. The computational
effort of the algorithm primarily focuses on matrix-vector products involving matrix A, requiring a total
of Cm = sm matrix-vector products.

3.2. Choice of the Taylor approximation degree m and the scaling parameter s

Algorithm 2 mentions two key parameters: the Taylor degree m and the scaling parameter s, both
of which should be selected appropriately. In [21], a quasi-backward error analysis is employed to
determine these parameters; however, this strategy is not feasible for the new implementation. We now
consider a forward error-based approach.
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Algorithm 2 shift phimv: the shift-based scaling and recursing method for approximating ϕl(A)b.

Require: A ∈ CN×N , b ∈ CN , l and µ .
1: µ = trace(A)/N;
2: Compute Ã = A−µI;
3: if ∥Ã∥ ≤ ∥A∥, then A = Ã else µ = 0; end if
4: Select the parameters m and s;
5: Compute Y = A/s;
6: Compute R = [b,Y b, 1

2!Y
2b, · · · , 1

m!Y
mb];

7: Compute W = (wi, j) with wi, j =
1
j!
∫ 1

0 (1− t)ie(1−t)µt jdt for i = 0,1, . . . ,m, j = 0,1, . . . , l −1;
8: Compute F = R ·W ;
9: φ1 := F(:, l);

10: if s = 1 then ϕl = φ1 return; end if
11: for k = 2 : s do
12: Compute the vector fk = ( fk,1, fk,2, . . . , fk,l)

T with fk, j = (1− 1
k )

l− j(1
k )

j 1
(l− j)! , j = 1,2, . . . , l;

13: Compute φk by the recurrence φk = (1− 1
k )

leµ/sTm(Y )φk−1 + F · fk based on matrix-vector
products;

14: end for
Ensure: ϕl := φs.

The error bound (3.8) provides support for the use of an absolute error criterion. To achieve high
computational accuracy, it is essential to minimize h̃m(Y −νI) as much as possible. Let θm denote the
largest value of θ such that h̃m(θ) does not exceed the tolerance Tol, that is,

θm = max{θ | h̃m(θ)≤ Tol}. (3.22)

In practice, the value of θm can be evaluated by solving the smallest positive solution of algebraic
equation

m+υ

∑
k=m+1

1
(k)!

θ
k = Tol, (3.23)

where υ is a large integer. In Table 1 we list some values of θm for υ = 150 and Tol = 2−53 using
MATLAB symbolic computation.

For a nonnegative integer p, let αp(Y − νI) = max{∥(Y − νI)p∥1/p, ∥(Y − νI)p+1∥1/(p+1)} and
ηm(Y −νI) = min{αp(Y −νI) | p(p−1)≤ m+1}. According to Theorem 4.2 of [3], we obtain

h̃m(Y −νI) =
∞

∑
k=m+1

1
k!
∥(Y −νI)k∥ ≤ h̃m (ηm(Y −νI)) . (3.24)

Choose a scaling parameter s such that

ηm(Y −νI) = ηm((A−µI)/s) = ηm(A−µI)/s ≤ θm. (3.25)

Then, we have
h̃m(Y −νI)≤ Tol. (3.26)
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Table 1. The values of θm satisfying (3.23) for υ = 150 and Tol= 2−53.

m θm m θm m θm m θm

1 1.49011611568402e-08 14 5.53490515693853e-01 27 3.03035372202815 40 6.56123464544190
2 8.73347022584872e-06 15 6.82758074718948e-01 28 3.27521355907414 41 6.85713423697126
3 2.27195870977283e-04 16 8.24603191638609e-01 29 3.52556376698837 42 7.15562009043849
4 1.67839429827810e-03 17 9.78344888569965e-01 30 3.78106962698314 43 7.45656075832843
5 6.56229738373172e-03 18 1.14329611222606 31 4.04142067325413 44 7.75983325403385
6 1.77645270836847e-02 19 1.31878122619485 32 4.30632888011671 45 8.06532241011747
7 3.81185198063615e-02 20 1.50414732239516 33 4.57552694565151 46 8.37292029066545
8 6.99327848078254e-02 21 1.69877113848913 34 4.84876668177908 47 8.68252565299361
9 1.14831747477397e-01 22 1.90206289621254 35 5.12581751448866 48 8.99404345434753

10 1.73788723247484e-01 23 2.11346801475487 36 5.40646509379029 49 9.30738439960222
11 2.47239754095914e-01 24 2.33246738440124 37 5.69051001024739 50 9.62246452631257
12 3.35213687828615e-01 25 2.55857668841814 38 5.97776661325278 51 9.93920482378810
13 4.37449366712157e-01 26 2.79134511801270 39 6.26806192522873 52 10.2575308831652

For a given m, it is natural to set the scaling parameter s to be

s = max(⌈ηm(A−µI)/θm⌉,1). (3.27)

Furthermore, one can choose m to minimize the computational cost Cm, that is,

m∗ = argmin{m⌈ηm(A−µI)/θm⌉, 0 ≤ m ≤ mmax}, (3.28)

where mmax is the maximum permissible value for m. A brief sketch of this process is summarized
in Algorithm 3. In this algorithm, the 1-norm is utilized primarily because existing algorithms can
effectively estimate the norms of matrix powers using matrix-vector products, as noted in [22].

4. Numerical experiments

In this section, we present two numerical experiments to demonstrate the performance of the new
algorithm, referred to as shift phimv. All tests are conducted using MATLAB R2018b on a desktop
equipped with an Intel Core i5 processor (1.8 GHz) and 8 GB of RAM. The tests involved the following
three existing MATLAB implementations:

• phipm: A MATLAB implementation based on Krylov subspace method described in [20].
• expmv: A MATLAB implementation based on scaling and squaring method presented in [13].
• phimv(s): A MATLAB implementation based on scaling and recursing method with partial

shifting, as described in [21].
The accuracy of the algorithm is evaluated by computing the relative error, defined as

Error=
∥yl − ŷl∥2

∥yl∥2
, (4.1)

where yl and ŷl represent the reference solution and the computed solution, respectively. The reference
solutions are obtained using expmv with maximal precision.
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Algorithm 3 select m s(A): This code determines m and s for a given A.

Require: A ∈ CN×N and mmax.
1: pmax = argmax{p(p−1)≤ mmax};
2: d1 = ∥A∥1;
3: for p = 2 : pmax +1 do
4: Estimate dp = ∥Ap∥1/p;
5: end for
6: α1 = d1;
7: for p = 2 : pmax do
8: αp = max(dp,dp+1);
9: end for

10: for m = 1 : mmax do
11: ηm = min(αp : p(p−1)≤ m+1);
12: end for
13: m = arg min{m⌈ηm/θm⌉ : 1 ≤ m ≤ mmax};
14: s = max(⌈ηm/θm⌉,1);
Ensure: m,s.

Experiment 1. In this experiment, we aim to demonstrate the advantages of the shifting strategy on
four different sparse matrices described below, applied to a vector b with all elements equal to 1.
We compute ϕl(A)b using shift phimv both with and without shifting. The case without shifting is
denoted as shift phimv(0). The four matrices considered are described as follows:

• The first matrix, lesp, is a nonsymmetric tridiagonal matrix of order N = 1,000 with 2,998
nonzero elements, its 1-norm is 3,003, and after shifting, the 1-norm is 1,999. This matrix is generated
using the MATLAB command gallery(‘lesp’,1000).

• The second matrix, triw, is an upper triangular matrix of order N = 1,000 with 500,500 nonzero
elements. Its 1-norm is 10,090, and after shifting, the 1-norm is 9,990. This matrix is generated using
the MATLAB command −100∗gallery(‘triw’,1000,0.1).

• The third matrix, wilkinson, is a symmetric, tridiagonal matrix of order N = 3,000 with
Wilkinson’s eigenvalues and 500,500 nonzero elements. Its 1-norm is 1,500.5, and after shifting,
the 1-norm is 751.5. This matrix is generated using the MATLAB command −wilkinson(3000).

• The fourth matrix, poisson, is a symmetric block tridiagonal matrix of order N = 10,000 with
49,600 nonzero elements. Its 1-norm is 20,000 and after shifting, the 1-norm is 10,000. This matrix
is generated using the MATLAB command −2500∗gallery(‘poisson’,100).

Table 2 presents the relative errors and execution times (in seconds) for each test. Both methods
achieve high computational accuracy; however, the case with shifting is even more accurate than the
method without shifting. As indicated in Theorem 1, this is primarily because the shifting method
reduces the scaling parameter s, and a smaller s results in lower error.

Furthermore, the shifting case is significantly more efficient than the non-shifting case as it leads to
fewer scaling steps and less matrix-vector products, particularly when there is a substantial difference
between the matrix norms before and after shifting. For the final two matrices, the 1-norm of the shifted
matrix is nearly half that of the original matrix, leading to nearly a twofold decrease in computational
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time.

Table 2. The relative errors and CPU time when computing ϕl(A)b for l = 1,2, . . . ,8 of
Experiment 1.

l method lesp triw wilkinson poisson

Error Time Error Time Error Time Error Time

1
shift phimv(0) 1.28e-14 4.04 3.14e-12 3.58 8.56e-12 26.75 6.05e-14 8.52
shift phimv 6.39e-15 2.65 9.93e-13 3.35 1.69e-15 13.39 6.87e-14 4.21

2
shift phimv(0) 2.33e-14 4.24 4.19e-12 3.73 8.88e-12 26.86 4.30e-13 10.10
shift phimv 2.65e-14 2.71 2.04e-12 3.43 9.36e-15 13.35 4.36e-13 4.54

3
shift phimv(0) 1.54e-14 3.85 3.48e-12 3.95 8.85e-12 27.15 1.16e-12 10.33
shift phimv 1.58e-14 2.64 2.35e-12 3.43 9.20e-15 13.74 1.16e-12 4.70

4
shift phimv(0) 5.11e-14 3.91 3.53e-12 3.78 8.47e-12 27.97 5.04e-15 9.65
shift phimv 4.82e-14 2.61 1.02e-12 3.46 4.26e-14 13.86 2.67e-15 4.48

5
shift phimv(0) 2.47e-14 4.78 2.78e-12 3.74 8.41e-12 27.34 1.27e-13 10.02
shift phimv 2.06e-14 3.59 8.25e-13 3.50 9.14e-15 13.95 1.21e-13 4.57

6
shift phimv(0) 5.39e-14 3.96 3.36e-12 3.65 8.33e-12 27.02 1.59e-13 10.00
shift phimv 5.49e-14 2.67 9.76e-13 3.45 5.88e-14 13.66 1.55e-13 4.58

7
shift phimv(0) 1.01e-13 4.30 3.16e-12 4.01 8.29e-12 28.16 1.67e-13 10.02
shift phimv 9.81e-14 2.84 1.18e-12 3.65 6.78e-15 14.08 1.71e-13 4.57

8
shift phimv(0) 6.53e-14 4.46 2.84e-12 3.76 8.25e-12 28.08 2.90e-14 9.92
shift phimv 6.21e-14 2.89 1.02e-12 3.33 2.51e-14 14.05 3.38e-14 4.55

Experiment 2. In this experiment, we compare our algorithm, shift phimv, with three other
algorithms: phimp, expmv, and phimv(s), for the computation of ϕl(tA)b for l = 1,2, . . . ,8, where
b = [1,1, . . . ,1]T . The following four matrices are considered in this experiment.

• The first matrix, poisson3Da, from the SuiteSparse Matrix Collection [23], is an unsymmetric
sparse matrix of order N = 13,514 with 352,762 nonzero elements. We set t = 100.

• The second matrix, Bruss2D, from the two-dimensional Brussels problem [24], is an unsymmetric
sparse matrix of order N = 20,000 with 119,200 nonzero elements. We set t = 10.

• The third matrix, fdm 2d, is generated by MATLAB routine
fdm 2d matrix(100,’10*x’,’100*y’,’0’) from LYAPACK toolbox [25]. This is an unsymmetric
sparse matrix of order N = 10,000 with 49,600 nonzero elements. We set t = 1.

• The fourth matrix, helm2d03, is also from the SuiteSparse Matrix Collection. This is a symmetric
sparse matrix of order N = 392,257 with 2,741,935 nonzero elements. We set t = 100.

The results are presented in Table 3, where the relative errors for expmv are computed using
the solutions of phimv(s) as the reference, while the relative errors for the other three methods
are computed using the solutions of expmv as the reference. All four methods demonstrate high
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Table 3. The relative errors and the CPU time when computing ϕl(tA)b for l = 1,2, . . . ,8 of
Experiment 2.

l method poisson3Da Bruss2D fdm 2d helm2d03

Error Time Error Time Error Time Error Time

1
phipm 9.24e-15 0.69 5.53e-14 7.22 1.33e-14 29.69 5.35e-16 0.42
expmv 2.86e-15 0.26 5.77e-14 8.82 1.23e-14 24.81 3.99e-16 1.79
phimv(s) 5.51e-16 0.27 1.53e-13 6.99 1.21e-14 19.96 3.99e-16 0.84
shift phimv 6.15e-16 0.24 5.63e-14 6.31 7.50e-15 17.45 3.87e-16 0.36

2
phipm 2.87e-14 0.48 9.78e-14 5.9 1.28e-12 28.18 6.19e-16 0.47
expmv 4.68e-15 0.26 9.95e-14 8.89 1.28e-12 23.27 4.33e-16 2.10
phimv(s) 1.89e-15 0.29 3.15e-14 7.23 1.30e-12 20.16 4.33e-16 0.94
shift phimv 2.10e-15 0.20 1.00e-13 6.23 1.30e-12 18.38 6.26e-16 0.39

3
phipm 8.26e-15 0.52 5.30e-14 5.09 1.47e-12 22.02 6.15e-16 0.49
expmv 3.26e-15 0.28 5.28e-14 9.11 1.47e-12 22.49 4.20e-16 2.00
phimv(s) 9.79e-16 0.29 1.08e-13 7.12 1.45e-12 19.86 4.20e-16 1.00
shift phimv 1.41e-15 0.21 5.22e-14 6.16 1.45e-12 17.18 2.11e-15 0.39

4
phipm 1.20e-14 0.71 3.18e-13 4.44 2.99e-13 19.98 1.22e-15 0.43
expmv 1.39e-14 0.42 3.19e-13 9.25 2.98e-13 22.44 1.12e-15 2.27
phimv(s) 1.00e-14 0.42 3.64e-13 7.68 3.21e-13 19.69 1.12e-15 0.97
shift phimv 1.21e-14 0.26 3.17e-13 6.32 3.16e-13 17.94 7.92e-15 0.41

5
phipm 2.09e-14 0.40 9.74e-13 3.88 3.57e-12 17.66 5.79e-16 0.49
expmv 3.36e-14 0.38 9.75e-13 8.85 3.57e-12 23.63 5.90e-16 2.07
phimv(s) 2.97e-14 0.42 1.02e-12 8.01 3.55e-12 20.82 5.90e-16 1.07
shift phimv 2.50e-14 0.39 9.75e-13 5.98 3.55e-12 17.54 2.87e-14 0.46

6
phipm 2.05e-14 0.32 5.80e-13 3.44 1.47e-12 15.26 7.64e-16 0.49
expmv 9.09e-15 0.32 5.80e-13 9.00 1.47e-12 22.99 5.09e-16 2.33
phimv(s) 1.25e-14 0.30 6.15e-13 7.40 1.49e-12 19.58 5.09e-16 1.29
shift phimv 1.62e-15 0.24 5.79e-13 6.05 1.49e-12 17.54 9.66e-14 0.47

7
phipm 2.01e-14 0.30 9.83e-13 3.16 5.82e-12 16.40 8.67e-16 0.47
expmv 9.62e-15 0.31 9.84e-13 8.62 6.62e-13 22.57 5.78e-16 2.27
phimv(s) 1.15e-14 0.31 1.02e-12 7.25 6.40e-13 19.41 5.78e-16 1.12
shift phimv 3.20e-14 0.25 9.85e-13 6.05 6.44e-13 17.89 3.33e-13 0.47

8
phipm 3.05e-15 0.31 2.46e-00 12.81 1.80e-11 21.45 3.54e-15 0.40
expmv 1.05e-14 0.34 6.36e-13 8.90 1.33e-12 23.13 3.14e-15 2.09
phimv(s) 8.44e-15 0.33 6.69e-13 7.88 1.31e-12 19.68 3.14e-15 0.93
shift phimv 2.78e-14 0.25 6.36e-13 6.07 1.31e-12 17.81 1.19e-12 0.39
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accuracy, except for phipm in the case of the second test matrix Bruss2D, where it fails to obtain
a convergent solution when solving for l = 8. For the remaining three test matrices, the results show
that shift phimv is the most efficient method.

5. Conclusions

This paper introduces an algorithm for computing the product of the ϕ-function and a vector, termed
shift phimv. The algorithm approximates the solution of ϕl(tA)b using a scaling and recursing
method that incorporates the shifting technique to further reduce the norm of the matrix and enhance
computational efficiency. We employ forward error analysis and computational cost to determine the
optimal Taylor approximation degree m and scaling parameter s. Numerical experiments comparing
our algorithm with other popular methods demonstrate its efficiency and stability for large, sparse
matrices.
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9 J. Sastre, J. Ibáñez, E. Defez, P. Ruiz, Efficient orthogonal matrix polynomial based
method for computing matrix exponential, Appl. Math. Comput., 217 (2011), 6451–6463.
https://doi.org/10.1016/j.amc.2011.01.004
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