Citation: Muammer Ayata, Ozan Özkan. A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation[J]. AIMS Mathematics, 2020, 5(6): 7402-7412. doi: 10.3934/math.2020474
[1] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[3] | M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Science & Business Media, 2011. |
[4] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[5] | S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182 (2006), 1083-1092. |
[6] | A. Kurt, H. Rezazadeh, M. Senol, et al. Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves, Journal of Ocean Engineering and Science, 4 (2019), 24-32. |
[7] | R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. |
[8] | A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, 2015. |
[9] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. |
[10] | A. Korkmaz, Exact solutions to (3+1) conformable time fractional Jimbo-Miwa, ZakharovKuznetsov and modified Zakharov-Kuznetsov equations, Commun. Theor. Phys., 67 (2017), 479-482. |
[11] | O. Özkan, A. Kurt, On conformable double Laplace transform, Opt. Quant. Electron., 50 (2018), 1-9. |
[12] | O. Özkan, A. Kurt, The analytical solutions for conformable integral equations and integrodifferential equations by conformable Laplace transform, Opt. Quant. Electron., 50 (2018), 1-8. |
[13] | A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Engineering, 8 (2019), 164-171. |
[14] | H. K. Jassim, Homotopy perturbation algorithm using Laplace transform for Newell-WhiteheadSegel equation, Int. J. Adv. Appl. Math. Mech., 2 (2015), 8-12. |
[15] | R. Ezzati, K. Shakibi, Using adomian's decomposition and multiquadric quasi-interpolation methods for solving Newell-Whitehead equation, Procedia Computer Science, 3 (2011), 1043-1048. |
[16] | A. Aasaraai, Analytic solution for Newell-Whitehead-Segel Equation by differential transform method, Middle East J. Sci. Res., 10 (2011), 270-273. |
[17] | B. A. Tayyan, A. H. Sakka, Lie symmetry analysis of some conformable fractional partial differential equations, Arabian Journal of Mathematics, 9 (2020), 201-212. |
[18] | A. Kurt, O. Tasbozan, D. Baleanu, New solutions for conformable fractional Nizhnik-NovikovVeselov system via G'/G expansion method and homotopy analysis methods, Opt. Quant. Electron., 49 (2017), 1-16. |
[19] | M. T. Islam, M. A. Akbar, M. A. K. Azad, Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative, AIMS Mathematics, 3 (2018), 625-646. |
[20] | M. Eslami, H. Rezazadeh, The first integral method for WuZhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475-485. |
[21] | M. A. Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications, 13 (2014), 177-183. |
[22] | D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. |
[23] | Y. Qi, X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44-49. |
[24] | F. Z. Ladrani, A. B. Cherif, Oscillation tests for conformable fractional differential equations with damping, Punjab University Journal of Mathematics, 52 (2020), 73-82. |
[25] | A. Khan, T. S. Khan, M. I. Syam, et al. Analytical solutions of time-fractional wave equation by double Laplace transform method, Eur. Phys. J. Plus, 134 (2019), 1-5. |
[26] | S. Alfaqeih, I. Kayijuka, Solving system of conformable fractional differential equations by conformable double Laplace decomposition method, J. Part. Diff. Eq., 33 (2020), 275-290. |
[27] | H. Eltayeb, S. Mesloub, A note on conformable double Laplace transform and singular conformable pseudoparabolic equations, J. Funct. Space., 2020 (2020), 1-12. |
[28] | S. Nourazar, M. Ramezanpour, A. Doosthoseini, A new algorithm to solve the gas dynamics equation: An application of the Fourier transform Adomian decomposition method, Applied Mathematical Sciences, 7 (2013), 4281-4286. |
[29] | S. G. Hosseini, S. Abbasbandy, Solution of Lane-Emden type equations by combination of the spectral method and Adomian decomposition method, Math. Probl. Eng., 2015 (2015), 1-10. |
[30] | M. Keyanpour, A. Mahmoudi, A hybrid method for solving optimal control problems, International Journal of Applied Mathematics, 42 (2012), 80-86. |
[31] | F. Geng, M. Cui, A novel method for nonlinear two-point boundary value problems: combination of ADM and RKM, Appl. Math. Comput., 217 (2011), 4676-4681. |
[32] | R. Rach, A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 102 (1984), 415-419. |
[33] | G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Math. Comput. Model., 13 (1990), 17-43. |
[34] | Y. Cherruault, G. Saccomandi, B. Some, New results for convergence of Adomian's method applied to integral equations, Math. Comput. Model., 16 (1992), 85-93. |
[35] | O. González-Gaxiola, R. Bernal-Jaquez, Applying Adomian decomposition method to solve Burgers equation with a non-linear source, International Journal of Applied and Computational Mathematics, 3 (2017), 213-224. |