Research article

On the Jensen’s inequality and its variants

  • Received: 22 October 2019 Accepted: 07 January 2020 Published: 16 January 2020
  • MSC : 26A51, 47A63, 26B25, 39B62, 26D15

  • The main purpose of this paper is to discuss operator Jensen inequality for convex functions, without appealing to operator convexity. Several variants of this inequality will be presented, and some applications will be shown too.

    Citation: Elahe Jaafari, Mohammad Sadegh Asgari, Mohsen Shah Hosseini, Baharak Moosavi. On the Jensen’s inequality and its variants[J]. AIMS Mathematics, 2020, 5(2): 1177-1185. doi: 10.3934/math.2020081

    Related Papers:

    [1] Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen . A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412
    [2] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [3] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [4] Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327
    [5] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [6] Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon . Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170
    [7] Asadullah Sohail, Muhammad Adil Khan, Emad Abouel Nasr, Xiaoye Ding . Further improvements of the Jensen inequality in the integral sense by virtue of 6-convexity along with applications. AIMS Mathematics, 2024, 9(5): 11278-11303. doi: 10.3934/math.2024553
    [8] Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671
    [9] Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623
    [10] Asadullah Sohail, Muhammad Adil Khan, Xiaoye Ding, Mohamed Sharaf, Mohammed A. El-Meligy . Improvements of the integral Jensen inequality through the treatment of the concept of convexity of thrice differential functions. AIMS Mathematics, 2024, 9(12): 33973-33994. doi: 10.3934/math.20241620
  • The main purpose of this paper is to discuss operator Jensen inequality for convex functions, without appealing to operator convexity. Several variants of this inequality will be presented, and some applications will be shown too.


    Let B(H) be the C–algebra of all bounded linear operators on a Hilbert space H. As customary, we reserve m, M for scalars and 1H for the identity operator on H. A self-adjoint operator A is said to be positive (written A0) if Ax,x0 holds for all xH also an operator A is said to be strictly positive (denoted by A>0) if A is positive and invertible. If A and B are self-adjoint, we write BA in case BA0. The Gelfand map f(t)f(A) is an isometrical –isomorphism between the C–algebra C(σ(A)) of continuous functions on the spectrum σ(A) of a selfadjoint operator A and the C–algebra generated by A and the identity operator 1H. If f,gC(σ(A)), then f(t)g(t) (tσ(A)) implies that f(A)g(A).

    A linear map Φ:B(H)B(K) is positive if Φ(A)0 whenever A0. It's said to be unital if Φ(1H)=1K. A continuous function f defined on the interval J is called an operator convex function if f((1v)A+vB)(1v)f(A)+vf(B) for every 0<v<1 and for every pair of bounded self-adjoint operators A and B whose spectra are both in J.

    The well-known Jensen inequality for the convex functions states that if f is a convex function on the interval [m,M], then

    f(ni=1wiai)ni=1wif(ai) (1.1)

    for all ai[m,M] and wi[0,1] (i=1,,n) with ni=1wi=1.

    There is an extensive amount of literature devoted to Jensen’s inequality concerning different generalizations, refinements, and converse results, see, for example [1,8,11].

    Mond and Pečarić [10] gave an operator extension of the Jensen inequality as follows: Let AB(H) be a self-adjoint operator with σ(A)[m,M], and let f(t) be a convex function on [m,M], then for any unit vector xH,

    f(Ax,x)f(A)x,x.

    Choi [2] showed if f:JR is an operator convex function, A is a self-adjoint operator with the spectra in J, and Φ:B(H)B(K) is unital positive linear mapping, then

    f(Φ(A))Φ(f(A)). (1.2)

    Though in the case of convex function the inequality (1.2) does not hold in general, we have the following estimate [3,Lemma 2.1]:

    f(Φ(A)x,x)Φ(f(A))x,x (1.3)

    for any unit vector xK.

    We here cite [4] and [13] as pertinent references to inequalities of types (1.2) and (1.3). For other recent results treating the Jensen operator inequality, we refer the reader to [5,9,12].

    In the current paper, extensions of Jensen-type inequalities for the continuous function of self-adjoint operators on complex Hilbert spaces are given. Actually, a more generalization of (1.2) is discussed. Of course, this will be at the cost of additional conditions or weaker estimates.

    We begin with the following auxiliary result:

    Lemma 2.1. Let f:JR be a convex and differentiable function on oJ (the interior of J) whose derivative f is continuous on oJ, let A,BB(H) be two self-adjoint operators with the spectra in [m,M]oJ, and let Φ:B(H)B(K) be a unital positive linear mapping. Then for any unit vector xK,

    f(Φ(B)x,x)(Φ(A)x,xΦ(B)x,x)Φ(f(A))x,xf(Φ(B)x,x)Φ(f(A)A)x,xΦ(B)x,xΦ(f(A))x,x.

    Proof. Since f is convex and differentiable on oJ, then we have for any t,s[m,M],

    f(s)(ts)f(t)f(s)f(t)(ts). (2.1)

    it is equivalent to

    f(s)tf(s)sf(t)f(s)f(t)tf(t)s. (2.2)

    If we fix s[m,M] and apply the continuous functional calculus for A, we get

    f(s)Af(s)s1Hf(A)f(s)1Hf(A)Asf(A).

    Applying the positive linear mapping Φ, this implies

    f(s)Φ(A)f(s)s1KΦ(f(A))f(s)1KΦ(f(A)A)sΦ(f(A)).

    Therefore, for any unit vector xK, we have

    f(s)Φ(A)x,xf(s)sΦ(f(A))x,xf(s)Φ(f(A)A)x,xsΦ(f(A))x,x.

    Since Φ is unital, and σ(B)[m,M], then σ(Φ(B))[m,M]. Thus, by substituting s=Φ(B)x,x, we deduce the desired result.

    Remark 2.1. By taking A=B in Lemma 2.1, we obtain a counterpart of (1.3).

    We now have all the tools needed to write the proof of the first theorem.

    Theorem 2.1. Let all the assumptions of Lemma 2.1 hold. Then

    Φ(f(A))f(Φ(A))+δ1K (2.3)

    where

    δ=sup{Φ(f(A)A)x,xΦ(A)x,xΦ(f(A))x,x:xK,x=1}.

    Proof. One can write,

    0Φ(f(A))x,xf(Φ(A)x,x)Φ(f(A)A)x,xΦ(A)x,xΦ(f(A))x,xsup{Φ(f(A)A)x,xΦ(A)x,xΦ(f(A))x,x: xK,x=1}

    thanks to Lemma 2.1. Whence,

    Φ(f(A))x,xf(Φ(A)x,x)+δ

    for any unit vector xK.

    Now we can write,

    Φ(f(A))x,xf(Φ(A)x,x)+δf(Φ(A))x,x+δ=f(Φ(A))x,x+δ1Kx,x=f(Φ(A))+δ1Kx,x

    for any unit vector xK.

    By replacing x by yy where y is any vector in K, we deduce the desired inequality.

    A kind of a converse of Theorem 2.1 can be considered as follows.

    Theorem 2.2. Let all the assumptions of Lemma 2.1 hold. Then

    f(Φ(A))Φ(f(A))+ξ1K (2.4)

    where

    ξ=sup{f(Φ(A))Φ(A)x,xΦ(A)x,xf(Φ(A))x,x:xK,x=1}.

    Proof. Fix t[m,M]. Since [m,M] contains the spectra of the A and Φ is unital, so the spectra of Φ(A) is also contained in [m,M]. Then we may replace s in the inequality (2.2) by Φ(A), via a functional calculus to get

    f(Φ(A))f(t)1Kf(Φ(A))Φ(A)tf(Φ(A)).

    This inequality implies, for any xK with x=1,

    f(Φ(A))x,xf(t)f(Φ(A))Φ(A)x,xtf(Φ(A))x,x. (2.5)

    Substituting t with Φ(A)x,x in (2.5). Thus,

    0f(Φ(A))x,xf(Φ(A)x,x)f(Φ(A))Φ(A)x,xΦ(A)x,xf(Φ(A))x,xsup{f(Φ(A))Φ(A)x,xΦ(A)x,xf(Φ(A))x,x: xK,x=1}

    i.e.,

    f(Φ(A))x,xf(Φ(A)x,x)+ξ

    for any xK with x=1.

    On the other hand,

    f(Φ(A))x,xf(Φ(A)x,x)+ξΦ(f(A))x,x+ξ

    where the second inequality follows from (1.3). This completes the proof.

    As we discussed above, inequality (2.1) plays a critical role in our Jensen type inequalities. Now, we intend to improve (2.1).

    Proposition 2.1. Let f:JR be a differentiable and convex, then for any s,tJ

    f(s)+f(s)(ts)f(t)2(f(s)+f(t)2f(s+t2)).

    Proof. Since f is convex on the interval J, we have

    f((1v)s+vt)=f((12v)s+2vs+t2)(12v)f(s)+2vf(s+t2)=(1v)f(s)+vf(t)2r(f(s)+f(t)2f(s+t2))

    for any s,tJ and r=min{v,1v}. Thus

    f((1v)s+vt)(1v)f(s)+vf(t)2r(f(s)+f(t)2f(s+t2)) (2.6)

    holds for any s,tJ and r=min{v,1v} with 0<v<1.

    From the above inequality one can write

    f(s+v(ts))f(s)vf(t)vf(s)2r(f(s)+f(t)2f(s+t2)).

    Dividing by v>0, we get

    f(s+v(ts))f(s)vf(t)f(s)2rv(f(s)+f(t)2f(s+t2)).

    Now, if v0, and by taking into account that for 0<v12, r=v we infer

    f(s)+f(s)(ts)f(t)2(f(s)+f(t)2f(s+t2))

    as desired.

    Remark 2.2. Suppose that all assumptions of Proposition 2.1 hold. The convexity assumption on f guarantees that

    f(s)+f(t)2f(s+t2)0.

    Consequently,

    f(s)+f(s)(ts)f(t)2(f(s)+f(t)2f(t+s2))f(t).

    Now, from Proposition 2.1, we get the following result.

    Theorem 2.3. Let f:JR be a convex and differentiable function on oJ (the interior of J) whose derivative f is continuous on oJ, let AB(H) self-adjoint operator with the spectra in [m,M]oJ, and let Φ:B(H)B(K) be a unital positive linear mapping. Then for any unit vector xK,

    f(Φ(A)x,x)Φ(f(A))x,x2(f(Φ(A)x,x)+Φ(f(A))x,x2Φ(f(Φ(A)x,x1H+A2))x,x) (2.7)

    and

    Φ(f(A))x,x+Φ(A)x,xΦ(f(A))x,xΦ(f(A)A)x,x+2(Φ(f(A))x,x+f(Φ(A)x,x)2Φ(f(Φ(A)x,x1H+A2))x,x)f(Φ(A)x,x). (2.8)

    Proof. If we fix s[m,M] and apply the continuous functional calculus for A, we get from Proposition 2.1,

    f(s)1H+f(s)(As1H)f(A)2(f(s)1H+f(A)2f(s1H+A2)).

    Applying the positive linear mapping Φ, this implies

    f(s)1K+f(s)(Φ(A)s1K)Φ(f(A))2(f(s)1K+f(A)2Φ(f(s1H+A2))).

    Therefore, for any unit vector xK, we have

    f(s)+f(s)(Φ(A)x,xs)Φ(f(A))x,x2(f(s)+f(A)x,x2Φ(f(s1H+A2))x,x).

    Since Φ is unital, and σ(A)[m,M], then σ(Φ(A))[m,M]. Thus, by substituting s=Φ(A)x,x, we deduce the inequality (2.7).

    On the other hand, if we fix t[m,M] and apply the continuous functional calculus for A, then Proposition 2.1 implies,

    f(A)+f(A)(t1HA)f(t)1H2(f(A)+f(t)1H2f(A+t1H2)).

    Applying unital positive linear mapping Φ, we infer

    Φ(f(A))+tΦ(f(A))Φ(f(A)A)f(t)1K2(Φ(f(A))+f(t)1K2Φ(f(A+t1H2))).

    Thus, for have any unit vector xK,

    Φ(f(A))x,x+tΦ(f(A))x,xΦ(f(A)A)x,xf(t)2(Φ(f(A))x,x+f(t)2Φ(f(A+t1H2))x,x). (2.9)

    Now, by taking t=Φ(A)x,x in (2.9), we get (2.8).

    Remark 2.3. We emphasize that (2.7) provides an improvement of (1.3), and (2.8) can be considered as a counterpart of (1.3).

    In the next result we consider a more general case. We remark that this result extends and improves [7,Lemma 2.3]

    Theorem 2.4. Let f:JR be a convex and differentiable function on oJ (the interior of J) whose derivative f is continuous on oJ with f(0)0, let AB(H) self-adjoint operator with the spectra in [m,M]oJ, and let Φ:B(H)B(K) be a unital positive linear mapping. Then for any vector xK with x1,

    f(Φ(A)x,x)Φ(f(A))x,x2(x2f(1x2Φ(A)x,x)+Φ(f(A))x,x2Φ(f(1x2Φ(A)x,x1H+A2))x,x).

    Proof. Let xK with x=1. Set y=x/x, so that y=1. We have

    f(Φ(A)x,x)=f(x2Φ(A)y,y+(1x2)0)x2f(Φ(A)y,y)+(1x2)f(0)(since f is convex)x2f(Φ(A)y,y)(since f(0)0)x2[Φ(f(A))y,y2(f(Φ(A)y,y)+Φ(f(A))y,y2)Φ(f(Φ(A)y,y1H+A2))y,y](by (2.7))=Φ(f(A))x,x2(x2f(1x2Φ(A)x,x)+Φ(f(A))x,x2Φ(f(1x2Φ(A)x,x1H+A2))x,x).

    The proof is completed.

    Remark 2.4. As we can see if x=1, then Theorem 2.4 turns out to be (2.7).

    Theorem 2.3 also implies the following result, which presents refinement and reverse of scalar Jensen inequality (1.1).

    Corollary 2.1. Let f:JR be a convex and differentiable function, let a1,,anJ, and let w1,,wn be positive scalars such that ni=1wi=1. Then

    f(ni=1wiai)ni=1wif(ai)2(f(ni=1wiai)+ni=1wif(ai)2ni=1wif(nj=1wjaj+ai2))

    and

    ni=1wif(ai)+(ni=1wiai)(ni=1wif(ai))ni=1wiaif(ai)+2(ni=1wif(ai)+f(ni=1wiai)2ni=1wif(ai+nj=1wjaj2))f(ni=1wiai).

    Proof. The proof follows from Theorem 2.3, by letting

    Φ(A)=A, A=[a100an] & x=[w1wn].

    Remark 2.5. Closely connected to the Jensen inequality is the Edmundson–Lah–Ribarić inequality [6]. From (2.6), by interchanging 1v=tmMm, v=MtMm, s=M, and t=m, we get

    f(t)tmMmf(M)+MtMmf(m)2r(f(M)+f(m)2f(M+m2)) (2.10)

    where r=min{tmMm,MtMm}=121Mm|tM+m2|. Hence, from (2.10), we get for any unit vector xK

    Φ(f(A))x,xΦ(A)x,xmMmf(M)+MΦ(A)x,xMmf(m)2(f(M)+f(m)2f(M+m2))(121MmΦ(|AM+m21H|)x,x)

    whenever AB(H) is a self-adjoint operator with the spectra in [m,M], and Φ:B(H)B(K) is a unital positive linear mapping. Of course, this can be regarded as an extension and improvement of Edmundson–Lah–Ribarić inequality.

    The authors wish to thank an anonymous referee for his/her helpful suggestions and comments, improving the readability of the paper.

    All authors declare no conflicts of interest.



    [1] M. K. Bakula, J. Pečarić, J. Perić, On the converse Jensen inequality, Appl. Math. Comput., 218 (2012), 6566-6575.
    [2] M. D. Choi, A. Schwarz, Inequality for positive linear maps on C*-algebras, Illinois J. Math., 18 (1974), 565-574. doi: 10.1215/ijm/1256051007
    [3] S. Furuichi, H. R. Moradi, A. Zardadi, Some new Karamata type inequalities and their applications to some entropies, Rep. Math. Phys., 84 (2019), 201-214. doi: 10.1016/S0034-4877(19)30083-7
    [4] F. Hansen, J. Pečarić, J. Perić, Jensen's operator inequality and it's converses, Math. Scand., 100 (2007), 61-73. doi: 10.7146/math.scand.a-15016
    [5] L. Horváth, K. A. Khan, J. Pečarić, Cyclic refinements of the different versions of operator Jensen's inequality, Electron. J. Linear Algebra, 31 (2016), 125-133. doi: 10.13001/1081-3810.3098
    [6] P. Lah, M. Ribarić, Converse of Jensen's inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 460 (1973), 201-205.
    [7] J. S. Matharu, M. S. Moslehian, J. S. Aujla, Eigenvalue extensions of Bohr's inequality, Linear Algebra Appl., 435 (2011), 270-276. doi: 10.1016/j.laa.2011.01.023
    [8] A. McD. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [9] J. Mićić, H. R. Moradi, S. Furuichi, Choi-Davis-Jensen's inequality without convexity, J. Math. Inequal., 12 (2018), 1075-1085.
    [10] B. Mond, J. Pečarić, On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
    [11] H. R. Moradi, S. Furuichi, F. C. Mitroi-Symeonidis, An extension of Jensen's operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 605-614.
    [12] H. R. Moradi, M. E. Omidvar, M. Adil Khan, Around Jensen's inequality for strongly convex functions, Aequationes Math., 92 (2018), 25-37. doi: 10.1007/s00010-017-0496-5
    [13] M. Sababheh, H. R. Moradi, S. Furuichi, Integrals refining convex inequalities, Bull. Malays. Math. Sci. Soc., 2019 (2019), 1-17.
  • This article has been cited by:

    1. Mohsen Erfanian Omidvar, Hamid Reza Moradi, On inequalities of Bellman and Aczél type, 2020, 5, 2473-6988, 3357, 10.3934/math.2020216
    2. Kwok Tai Chui, Varsha Arya, Dragan Peraković, Wadee Alhalabi, 2023, Chapter 34, 978-3-031-22017-3, 361, 10.1007/978-3-031-22018-0_34
    3. Neri Merhav, Some Families of Jensen-like Inequalities with Application to Information Theory, 2023, 25, 1099-4300, 752, 10.3390/e25050752
    4. Yaser Khatib, Stanford Shateyi, Improvement of inequalities related to powers of the numerical radius, 2024, 9, 2473-6988, 19089, 10.3934/math.2024930
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4799) PDF downloads(502) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog