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1. Introduction

Let B (H) be the C∗–algebra of all bounded linear operators on a Hilbert space H . As customary,
we reserve m, M for scalars and 1H for the identity operator on H . A self-adjoint operator A is said
to be positive (written A ≥ 0) if 〈Ax, x〉 ≥ 0 holds for all x ∈ H also an operator A is said to be
strictly positive (denoted by A > 0) if A is positive and invertible. If A and B are self-adjoint, we write
B ≥ A in case B − A ≥ 0. The Gelfand map f (t) 7→ f (A) is an isometrical ∗–isomorphism between
the C∗–algebra C (σ (A)) of continuous functions on the spectrum σ (A) of a selfadjoint operator A
and the C∗–algebra generated by A and the identity operator 1H . If f , g ∈ C (σ (A)), then f (t) ≥ g (t)
(t ∈ σ (A)) implies that f (A) ≥ g (A).

A linear map Φ : B (H) → B (K) is positive if Φ (A) ≥ 0 whenever A ≥ 0. It’s said to be unital if
Φ (1H ) = 1K . A continuous function f defined on the interval J is called an operator convex function if
f ((1 − v) A + vB) ≤ (1 − v) f (A)+v f (B) for every 0 < v < 1 and for every pair of bounded self-adjoint
operators A and B whose spectra are both in J.

The well-known Jensen inequality for the convex functions states that if f is a convex function on
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the interval [m,M], then

f

 n∑
i=1

wiai

 ≤ n∑
i=1

wi f (ai) (1.1)

for all ai ∈ [m,M] and wi ∈ [0, 1] (i = 1, . . . , n) with
∑n

i=1 wi = 1.
There is an extensive amount of literature devoted to Jensen’s inequality concerning different

generalizations, refinements, and converse results, see, for example [1, 8, 11].
Mond and Pečarić [10] gave an operator extension of the Jensen inequality as follows: Let A ∈ B (H)
be a self-adjoint operator with σ (A) ⊆ [m,M], and let f (t) be a convex function on [m,M], then for
any unit vector x ∈ H ,

f (〈Ax, x〉) ≤ 〈 f (A) x, x〉 .

Choi [2] showed if f : J → R is an operator convex function, A is a self-adjoint operator with the
spectra in J, and Φ : B (H)→ B (K) is unital positive linear mapping, then

f (Φ (A)) ≤ Φ ( f (A)) . (1.2)

Though in the case of convex function the inequality (1.2) does not hold in general, we have the
following estimate [3, Lemma 2.1]:

f (〈Φ (A) x, x〉) ≤ 〈Φ ( f (A)) x, x〉 (1.3)

for any unit vector x ∈ K .
We here cite [4] and [13] as pertinent references to inequalities of types (1.2) and (1.3). For other

recent results treating the Jensen operator inequality, we refer the reader to [5, 9, 12].
In the current paper, extensions of Jensen-type inequalities for the continuous function of self-

adjoint operators on complex Hilbert spaces are given. Actually, a more generalization of (1.2) is
discussed. Of course, this will be at the cost of additional conditions or weaker estimates.

2. Main results

We begin with the following auxiliary result:

Lemma 2.1. Let f : J → R be a convex and differentiable function on
o
J (the interior of J) whose

derivative f ′ is continuous on
o
J , let A, B ∈ B (H) be two self-adjoint operators with the spectra in

[m,M] ⊂
o
J , and let Φ : B (H)→ B (K) be a unital positive linear mapping. Then for any unit vector

x ∈ K ,
f ′ (〈Φ (B) x, x〉) (〈Φ (A) x, x〉 − 〈Φ (B) x, x〉)

≤ 〈Φ ( f (A)) x, x〉 − f (〈Φ (B) x, x〉)

≤
〈
Φ

(
f ′ (A) A

)
x, x

〉
− 〈Φ (B) x, x〉

〈
Φ

(
f ′ (A)

)
x, x

〉
.

Proof. Since f is convex and differentiable on
o
J , then we have for any t, s ∈ [m,M],

f ′ (s) (t − s) ≤ f (t) − f (s) ≤ f ′ (t) (t − s) . (2.1)

it is equivalent to
f ′ (s) t − f ′ (s) s ≤ f (t) − f (s) ≤ f ′ (t) t − f ′ (t) s. (2.2)
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If we fix s ∈ [m,M] and apply the continuous functional calculus for A, we get

f ′ (s) A − f ′ (s) s1H ≤ f (A) − f (s) 1H ≤ f ′ (A) A − s f ′ (A) .

Applying the positive linear mapping Φ, this implies

f ′ (s) Φ (A) − f ′ (s) s1K ≤ Φ ( f (A)) − f (s) 1K
≤ Φ

(
f ′ (A) A

)
− sΦ

(
f ′ (A)

)
.

Therefore, for any unit vector x ∈ K , we have

f ′ (s) 〈Φ (A) x, x〉 − f ′ (s) s

≤ 〈Φ ( f (A)) x, x〉 − f (s)

≤
〈
Φ

(
f ′ (A) A

)
x, x

〉
− s

〈
Φ

(
f ′ (A)

)
x, x

〉
.

Since Φ is unital, and σ (B) ⊆ [m,M], then σ (Φ (B)) ⊆ [m,M]. Thus, by substituting s = 〈Φ (B) x, x〉,
we deduce the desired result. �

Remark 2.1. By taking A = B in Lemma 2.1, we obtain a counterpart of (1.3).

We now have all the tools needed to write the proof of the first theorem.

Theorem 2.1. Let all the assumptions of Lemma 2.1 hold. Then

Φ ( f (A)) ≤ f (Φ (A)) + δ1K (2.3)

where
δ = sup

{〈
Φ

(
f ′ (A) A

)
x, x

〉
− 〈Φ (A) x, x〉

〈
Φ

(
f ′ (A)

)
x, x

〉
: x ∈ K , ‖x‖ = 1

}
.

Proof. One can write,

0 ≤ 〈Φ ( f (A)) x, x〉 − f (〈Φ (A) x, x〉)

≤
〈
Φ

(
f ′ (A) A

)
x, x

〉
− 〈Φ (A) x, x〉

〈
Φ

(
f ′ (A)

)
x, x

〉
≤ sup

{〈
Φ

(
f ′ (A) A

)
x, x

〉
− 〈Φ (A) x, x〉

〈
Φ

(
f ′ (A)

)
x, x

〉
: x ∈ K , ‖x‖ = 1

}
thanks to Lemma 2.1. Whence,

〈Φ ( f (A)) x, x〉 ≤ f (〈Φ (A) x, x〉) + δ

for any unit vector x ∈ K .
Now we can write,

〈Φ ( f (A)) x, x〉 ≤ f (〈Φ (A) x, x〉) + δ

≤ 〈 f (Φ (A)) x, x〉 + δ

= 〈 f (Φ (A)) x, x〉 + 〈δ1K x, x〉

= 〈 f (Φ (A)) + δ1K x, x〉

for any unit vector x ∈ K .
By replacing x by y

‖y‖ where y is any vector in K , we deduce the desired inequality. �
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A kind of a converse of Theorem 2.1 can be considered as follows.

Theorem 2.2. Let all the assumptions of Lemma 2.1 hold. Then

f (Φ (A)) ≤ Φ ( f (A)) + ξ1K (2.4)

where
ξ = sup {〈 f ′ (Φ (A)) Φ (A) x, x〉 − 〈Φ (A) x, x〉 〈 f ′ (Φ (A)) x, x〉 : x ∈ K , ‖x‖ = 1} .

Proof. Fix t ∈ [m,M]. Since [m,M] contains the spectra of the A and Φ is unital, so the spectra of Φ (A)
is also contained in [m,M]. Then we may replace s in the inequality (2.2) by Φ (A), via a functional
calculus to get

f (Φ (A)) − f (t) 1K ≤ f ′ (Φ (A)) Φ (A) − t f ′ (Φ (A)) .

This inequality implies, for any x ∈ K with ‖x‖ = 1,

〈 f (Φ (A)) x, x〉 − f (t) ≤ 〈 f ′ (Φ (A)) Φ (A) x, x〉 − t 〈 f ′ (Φ (A)) x, x〉 . (2.5)

Substituting t with 〈Φ (A) x, x〉 in (2.5). Thus,

0 ≤ 〈 f (Φ (A)) x, x〉 − f (〈Φ (A) x, x〉)

≤ 〈 f ′ (Φ (A)) Φ (A) x, x〉 − 〈Φ (A) x, x〉 〈 f ′ (Φ (A)) x, x〉

≤ sup {〈 f ′ (Φ (A)) Φ (A) x, x〉 − 〈Φ (A) x, x〉 〈 f ′ (Φ (A)) x, x〉 : x ∈ K , ‖x‖ = 1}

i.e.,
〈 f (Φ (A)) x, x〉 ≤ f (〈Φ (A) x, x〉) + ξ

for any x ∈ K with ‖x‖ = 1.
On the other hand,

〈 f (Φ (A)) x, x〉 ≤ f (〈Φ (A) x, x〉) + ξ

≤ 〈Φ ( f (A)) x, x〉 + ξ

where the second inequality follows from (1.3). This completes the proof. �

As we discussed above, inequality (2.1) plays a critical role in our Jensen type inequalities. Now,
we intend to improve (2.1).

Proposition 2.1. Let f : J → R be a differentiable and convex, then for any s, t ∈ J

f (s) + f ′ (s) (t − s) ≤ f (t) − 2
(

f (s) + f (t)
2

− f
( s + t

2

))
.

Proof. Since f is convex on the interval J, we have

f ((1 − v) s + vt) = f
(
(1 − 2v) s + 2v

s + t
2

)
≤ (1 − 2v) f (s) + 2v f

( s + t
2

)
= (1 − v) f (s) + v f (t) − 2r

(
f (s) + f (t)

2
− f

( s + t
2

))
AIMS Mathematics Volume 5, Issue 2, 1177–1185.
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for any s, t ∈ J and r = min {v, 1 − v}. Thus

f ((1 − v) s + vt) ≤ (1 − v) f (s) + v f (t) − 2r
(

f (s) + f (t)
2

− f
( s + t

2

))
(2.6)

holds for any s, t ∈ J and r = min {v, 1 − v} with 0 < v < 1.
From the above inequality one can write

f (s + v (t − s)) − f (s) ≤ v f (t) − v f (s) − 2r
(

f (s) + f (t)
2

− f
( s + t

2

))
.

Dividing by v > 0, we get

f (s + v (t − s)) − f (s)
v

≤ f (t) − f (s) − 2
r
v

(
f (s) + f (t)

2
− f

( s + t
2

))
.

Now, if v→ 0, and by taking into account that for 0 < v ≤ 1
2 , r = v we infer

f (s) + f ′ (s) (t − s) ≤ f (t) − 2
(

f (s) + f (t)
2

− f
( s + t

2

))
as desired. �

Remark 2.2. Suppose that all assumptions of Proposition 2.1 hold. The convexity assumption on f
guarantees that

f (s) + f (t)
2

− f
( s + t

2

)
≥ 0.

Consequently,

f (s) + f ′ (s) (t − s) ≤ f (t) − 2
(

f (s) + f (t)
2

− f
( t + s

2

))
≤ f (t) .

Now, from Proposition 2.1, we get the following result.

Theorem 2.3. Let f : J → R be a convex and differentiable function on
o
J (the interior of J) whose

derivative f ′ is continuous on
o
J , let A ∈ B (H) self-adjoint operator with the spectra in [m,M] ⊂

o
J ,

and let Φ : B (H)→ B (K) be a unital positive linear mapping. Then for any unit vector x ∈ K ,

f (〈Φ (A) x, x〉)

≤ 〈Φ ( f (A)) x, x〉

− 2
(

f (〈Φ (A) x, x〉) + 〈Φ ( f (A)) x, x〉
2

−

〈
Φ

(
f
(
〈Φ (A) x, x〉 1H + A

2

))
x, x

〉) (2.7)

and
〈Φ ( f (A)) x, x〉 + 〈Φ (A) x, x〉

〈
Φ

(
f ′ (A)

)
x, x

〉
−

〈
Φ

(
f ′ (A) A

)
x, x

〉
+ 2

(
〈Φ ( f (A)) x, x〉 + f (〈Φ (A) x, x〉)

2
−

〈
Φ

(
f
(
〈Φ (A) x, x〉 1H + A

2

))
x, x

〉)
≤ f (〈Φ (A) x, x〉) .

(2.8)
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Proof. If we fix s ∈ [m,M] and apply the continuous functional calculus for A, we get from Proposition
2.1,

f (s) 1H + f ′ (s) (A − s1H ) ≤ f (A) − 2
(

f (s) 1H + f (A)
2

− f
(

s1H + A
2

))
.

Applying the positive linear mapping Φ, this implies

f (s) 1K + f ′ (s) (Φ (A) − s1K )

≤ Φ ( f (A)) − 2
(

f (s) 1K + f (A)
2

− Φ

(
f
(

s1H + A
2

)))
.

Therefore, for any unit vector x ∈ K , we have

f (s) + f ′ (s) (〈Φ (A) x, x〉 − s)

≤ 〈Φ ( f (A)) x, x〉 − 2
(

f (s) + 〈 f (A) x, x〉
2

−

〈
Φ

(
f
(

s1H + A
2

))
x, x

〉)
.

Since Φ is unital, and σ (A) ⊆ [m,M], then σ (Φ (A)) ⊆ [m,M]. Thus, by substituting s = 〈Φ (A) x, x〉,
we deduce the inequality (2.7).

On the other hand, if we fix t ∈ [m,M] and apply the continuous functional calculus for A, then
Proposition 2.1 implies,

f (A) + f ′ (A) (t1H − A) ≤ f (t) 1H − 2
(

f (A) + f (t) 1H
2

− f
(

A + t1H
2

))
.

Applying unital positive linear mapping Φ, we infer

Φ ( f (A)) + tΦ
(
f ′ (A)

)
− Φ

(
f ′ (A) A

)
≤ f (t) 1K − 2

(
Φ ( f (A)) + f (t) 1K

2
− Φ

(
f
(

A + t1H
2

)))
.

Thus, for have any unit vector x ∈ K ,

〈Φ ( f (A)) x, x〉 + t
〈
Φ

(
f ′ (A)

)
x, x

〉
−

〈
Φ

(
f ′ (A) A

)
x, x

〉
≤ f (t) − 2

(
〈Φ ( f (A)) x, x〉 + f (t)

2
−

〈
Φ

(
f
(

A + t1H
2

))
x, x

〉)
.

(2.9)

Now, by taking t = 〈Φ (A) x, x〉 in (2.9), we get (2.8). �

Remark 2.3. We emphasize that (2.7) provides an improvement of (1.3), and (2.8) can be considered
as a counterpart of (1.3).

In the next result we consider a more general case. We remark that this result extends and improves
[7, Lemma 2.3]

Theorem 2.4. Let f : J → R be a convex and differentiable function on
o
J (the interior of J) whose

derivative f ′ is continuous on
o
J with f (0) ≤ 0, let A ∈ B (H) self-adjoint operator with the spectra
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in [m,M] ⊂
o
J , and let Φ : B (H) → B (K) be a unital positive linear mapping. Then for any vector

x ∈ K with ‖x‖ ≤ 1,

f (〈Φ (A) x, x〉)

≤ 〈Φ ( f (A)) x, x〉

− 2


‖x‖2 f

(
1
‖x‖2
〈Φ (A) x, x〉

)
+ 〈Φ ( f (A)) x, x〉

2
−

〈
Φ

 f

 1
‖x‖2
〈Φ (A) x, x〉 1H + A

2


 x, x

〉 .

Proof. Let x ∈ K with ‖x‖ = 1. Set y = x/‖x‖ , so that ‖y‖ = 1. We have

f (〈Φ (A) x, x〉)

= f
(
‖x‖2 〈Φ (A) y, y〉 +

(
1 − ‖x‖2

)
0
)

≤ ‖x‖2 f (〈Φ (A) y, y〉) +
(
1 − ‖x‖2

)
f (0) (since f is convex)

≤ ‖x‖2 f (〈Φ (A) y, y〉) (since f (0) ≤ 0)

≤ ‖x‖2
[
〈Φ ( f (A)) y, y〉 − 2

(
f (〈Φ (A) y, y〉) + 〈Φ ( f (A)) y, y〉

2

)
−

〈
Φ

(
f
(
〈Φ (A) y, y〉 1H + A

2

))
y, y

〉]
(by (2.7))

= 〈Φ ( f (A)) x, x〉

− 2


‖x‖2 f

(
1
‖x‖2
〈Φ (A) x, x〉

)
+ 〈Φ ( f (A)) x, x〉

2
−

〈
Φ

 f

 1
‖x‖2
〈Φ (A) x, x〉 1H + A

2


 x, x

〉 .

The proof is completed. �

Remark 2.4. As we can see if ‖x‖ = 1, then Theorem 2.4 turns out to be (2.7).

Theorem 2.3 also implies the following result, which presents refinement and reverse of scalar
Jensen inequality (1.1).

Corollary 2.1. Let f : J → R be a convex and differentiable function, let a1, . . . , an ∈ J, and let
w1, . . . ,wn be positive scalars such that

∑n
i=1 wi = 1. Then

f

 n∑
i=1

wiai


≤

n∑
i=1

wi f (ai) − 2

 f
(∑n

i=1 wiai
)

+
∑n

i=1 wi f (ai)
2

−

n∑
i=1

wi f
(∑n

j=1 w ja j + ai

2

)
AIMS Mathematics Volume 5, Issue 2, 1177–1185.
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and
n∑

i=1

wi f (ai)

+

 n∑
i=1

wiai

  n∑
i=1

wi f ′ (ai)

 − n∑
i=1

wiai f ′ (ai)

+ 2

∑n
i=1 wi f (ai) + f

(∑n
i=1 wiai

)
2

−

n∑
i=1

wi f
(ai +

∑n
j=1 w ja j

2

)
≤ f

 n∑
i=1

wiai

 .
Proof. The proof follows from Theorem 2.3, by letting

Φ (A) = A, A =


a1 0

. . .

0 an

 & x =


√

w1

√
wn

 .
�

Remark 2.5. Closely connected to the Jensen inequality is the Edmundson–Lah–Ribarić
inequality [6]. From (2.6), by interchanging 1 − v = t−m

M−m , v = M−t
M−m , s = M, and t = m, we get

f (t) ≤
t − m

M − m
f (M) +

M − t
M − m

f (m) − 2r
(

f (M) + f (m)
2

− f
(M + m

2

))
(2.10)

where r = min
{

t−m
M−m ,

M−t
M−m

}
= 1

2 −
1

M−m

∣∣∣t − M+m
2

∣∣∣. Hence, from (2.10), we get for any unit vector x ∈ K

〈Φ ( f (A)) x, x〉

≤
〈Φ (A) x, x〉 − m

M − m
f (M) +

M − 〈Φ (A) x, x〉
M − m

f (m)

− 2
(

f (M) + f (m)
2

− f
(M + m

2

)) (1
2
−

1
M − m

〈
Φ

(∣∣∣∣∣A − M + m
2

1H
∣∣∣∣∣) x, x

〉)
whenever A ∈ B (H) is a self-adjoint operator with the spectra in [m,M], and Φ : B (H) → B (K) is
a unital positive linear mapping. Of course, this can be regarded as an extension and improvement of
Edmundson–Lah–Ribarić inequality.
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