Citation: Samir Kumar Bhandari, Dhananjay Gopal, Pulak Konar. Probabilistic α-min Ciric type contraction results using a control function[J]. AIMS Mathematics, 2020, 5(2): 1186-1198. doi: 10.3934/math.2020082
[1] | S. K. Bhandari, Probabilistic Ciric type contraction results using drastic t-norm, B. Cal. Math. Soc., 109 (2017), 439-454. |
[2] | S. K. Bhandari, B. S. Choudhury, Two unique fixed point results of p-cyclic probabilistic c-contractions using different types of t-norm, J. Int. Math. Vir. Inst., 7 (2017), 147-164. |
[3] | S. K. Bhandari, Unique Probablistic p-cyclic c-contraction results using special product T-Norm, B. Cal. Math. Soc., 109 (2017), 55-68. |
[4] | S. K. Bhandari, Generalized contraction results on probabilistic 2-metric spaces using a control function, Int. J. Eng. Sci., 7 (2018), 49-55. |
[5] | S. S. Chang, B. S. Lee, Y. J. Cho, et al. Generalized contraction mapping principle and differential equations in probabilistic metric spaces, P. Am. Math. Soc., 124 (1996), 2367-2376. doi: 10.1090/S0002-9939-96-03289-3 |
[6] | B. S. Choudhury, K. P. Das, A new contraction principle in Menger spaces, Acta Math. Sin., 24 (2008), 1379-1386. doi: 10.1007/s10114-007-6509-x |
[7] | B. S. Choudhury, K. P. Das, S. K. Bhandari, Two Ciric type probabilistic fixed point theorems for discontinuous mappings, Int. Electron. J. Pure Appl. Math., 5 (2012), 111-126. |
[8] | B. S. Choudhury, S. K. Bhandari, Ciric type p-cyclic contraction results for discontinuous mappings, J. Int. Math. Vir. Inst., 4 (2014), 27-42. |
[9] | B. S. Choudhury, S. K. Bhandari, P. Saha, A cyclic probabilistic c-contraction results using Hadzic and Lukasiewicz t-norms in Menger spaces, Anal. Theory Appl., 31 (2015), 283-298. doi: 10.4208/ata.2015.v31.n3.6 |
[10] | B. S. Choudhury, S. K. Bhandari, P. Saha, Unique fixed points of p-cyclic kannan type probabilistic contractions, Boll. Unione Mat. Ital., 10 (2017), 179-189. doi: 10.1007/s40574-016-0073-1 |
[11] | B. S. Choudhury, S. K. Bhandari, P- cyclic c-contraction result in Menger spaces using a control function, Demonstratio Math., 49 (2016), 213-223. |
[12] | B. S. Choudhury, S. K. Bhandari, P. Saha, Probabilistic p-cyclic contractions using different types of t-norms, Random Oper. Stoch. Equ., 26 (2018), 39-52. doi: 10.1515/rose-2018-0004 |
[13] | P. N. Dutta, B. S. Choudhury, K. P. Das, Some fixed point results in Menger spaces using a control function, Surv. Math. Appl., 4 (2009), 41-52. |
[14] | D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955-967. |
[15] | O. Hadzic, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001. |
[16] | A. F. R. L. de Hierro, M. de la Sen, Some fixed point theorems in Menger probabilistic metric-like spaces, Fixed Point Theory A.,2015 (2015), 176. |
[17] | M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659 |
[18] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336-344. |
[19] | M. A. Kutbi, D. Gopal, C. Vetro, et al. Further generalization of fixed point theorems in Menger PM-spaces, Fixed Point Theory A., 2015 (2015), 32. |
[20] | K. Menger, Statistical metrics, P. Natl. Acad. Sci. USA, 28 (1942), 535-537. doi: 10.1073/pnas.28.12.535 |
[21] | D. Mihet, Altering distances in probabilistic Menger spaces, Nonlinear Anal., 71 (2009), 2734-2738. doi: 10.1016/j.na.2009.01.107 |
[22] | S. V. R. Naidu, Some fixed point theorems in metric spaces by altering distances, Czec. Math. J., 53 (2003), 205-212. doi: 10.1023/A:1022991929004 |
[23] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contrantive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |
[24] | K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points, Ind. J. Pure. Appl. Math., 30 (1999), 641-647. |
[25] | K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu, et al. Generalisation of common fixed point theorems for weakly commuting maps by altering distances, Tamkang J. Math., 31 (2000), 243-250. |
[26] | B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North-Holland, 1983. |
[27] | V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mappings on probabilistic metric spaces, Theor. Math. Syst., 6 (1972), 97-102. doi: 10.1007/BF01706080 |
[28] | M. De la Sen, A. Ibeas, On the global stability of an iterative scheme in a probabilistic Menger space, J. Inequal. Appl., 2015 (2015), 243. |
[29] | G. Verdoolage, G. Karagounis, A. Murari, et al. Jet-Efda contributors, Modelling fusion data in probabilistic metric spaces: applications to the identification of confinement regimes and plasma disruptions, Fusion Sci. Tech., 62 (2012), 356-365. doi: 10.13182/FST12-A14627 |