Citation: Yu-Lan Ma, Bang-Qing Li. Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. AIMS Mathematics, 2020, 5(2): 1162-1176. doi: 10.3934/math.2020080
[1] | G. Whitham, Linear and nonlinear waves, Wiley, New York, 1974. |
[2] | G. Eilenberger, Solitons, Springer-Verlag, Berlin, 1983. |
[3] | S. Burger, K. Bongs, S. Dettmer, et al. Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 5198-5201. doi: 10.1103/PhysRevLett.83.5198 |
[4] | K. E. Strecker, G. G. Partridge, A. G. Truscott, et al. Formation and propagation of matter-wave soliton trains, Nature, 417 (2002), 150-153. doi: 10.1038/nature747 |
[5] | L. Khaykovich, F. Schreck, G. Ferrari, et al. Formation of a matter-wave bright soliton, Science, 296 (2002), 290-1293. |
[6] | B. Kibler, J. Fatome, C. Finot, et al. The Peregrine soliton in nonlinear fibre optics, Nat. Phys., 6 (2010), 790-795. doi: 10.1038/nphys1740 |
[7] | B. Q. Li, Y. L. Ma, J. Z. Sun, The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation, Appl. Math. Comput., 216 (2010), 3522-3535. |
[8] | A. M. Wazwaz, Multiple soliton solutions and multiple complex soliton solutions for two distionct Boussinesq equations, Nonlinear Dyn., 85 (2016), 731-737. doi: 10.1007/s11071-016-2718-0 |
[9] | L. Liu, B. Tian, H. P. Chai, et al. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber, Phys. Rev. E, 95 (2017), 032202. |
[10] | Q. M. Huang, Y. T. Gao, S. L. Jia, et al. Bilinear Backlund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation, Nonlinear Dyn., 87 (2017), 2529-2540. doi: 10.1007/s11071-016-3209-z |
[11] | Y. L. Ma, Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97 (2019), 95-105. |
[12] | B. Q. Li, Y. L. Ma, The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets, Physica A, 494 (2018), 169-174. doi: 10.1016/j.physa.2017.12.014 |
[13] | E. Pelinovsky, C. Kharif, Extreme Ocean Waves, Springer, Berlin, 2008. |
[14] | A. R. Osborne, Nonlinear ocean waves, Academic Press, New York, 2009. |
[15] | A. Chabchoub, N. Hoffmann, H. Branger, et al. Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model, Phys. Fluids, 25 (2013), 101704. |
[16] | A. Lechuga, Rogue waves in a wave tank: experiments and modeling, Nat. Hazards Earth Sys. Sci., 13 (2013), 2951-2955. doi: 10.5194/nhess-13-2951-2013 |
[17] | M. Närhi, B. Wetzel, C. Billet, et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability, Nat. Commun., 7 (2016), 13675. |
[18] | D. R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation, Phys. Rev. Lett., 101 (2008), 233902. |
[19] | Y. V. Bludov, V. V. Konotop, N. Akhmediev, Matter rogue waves, Phys. Rev. A, 80 (2009), 033610. |
[20] | Z. Y. Yan, V. V. Konotop, N. Akhmediev, Three-dimensional rogue waves in nonstationary parabolic potentials, Phys. Rev. E, 82 (2010), 036610. |
[21] | A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502. |
[22] | H. Bailung, S. K. Sharma, Y. Nakamura, Observation of peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 107 (2011), 255005. |
[23] | B. L. Guo, L. M. Ling, Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations, Chin. Phys. Lett., 28 (2011), 110202. |
[24] | B. L. Guo, L. M. Ling, Q. P. Liu, Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012), 026607. |
[25] | Y. Ohta, J. K. Yang, Dynamics of rogue waves in the Davey-Stewartson II equation, J. Phys. A, 46 (2013), 105202. |
[26] | Z. Y. Ma, S. H. Ma, Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation, Chinese Phys. B, 21 (2012), 030507. |
[27] | J. S. He, H. R. Zhang, L. H. Wang, et al. Generating mechanism for higher-order rogue waves, Phys. Rev. E, 87 (2013), 052914. |
[28] | J. S. He, S. W. Xu, K. Porsezian, et al. Rogue wave triggered at a critical frequency of a nonlinear resonant medium, Phys. Rev. E, 93 (2016), 062201. |
[29] | Y. Zhang, H. H. Dong, X. E. Zhang, et al. Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73 (2017), 246-252. doi: 10.1016/j.camwa.2016.11.009 |
[30] | Y. H. Yin, W. X. Ma, J. G. Liu, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 76 (2018), 1275-1283. doi: 10.1016/j.camwa.2018.06.020 |
[31] | H. N. Xu, W. Y. Ruan, Y. Zhang, et al. Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett., 99 (2020), 105976. |
[32] | C. J. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation, Nonlinear Dyn., 84 (2016), 697-702. doi: 10.1007/s11071-015-2519-x |
[33] | C. J. Wang, H. Fang, X. X. Tang, State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation, Nonlinear Dyn., 95 (2019), 2943-2961. doi: 10.1007/s11071-018-04733-5 |
[34] | Z. L. Zhao, L. C. He, Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 95 (2019), 114-121. doi: 10.1016/j.aml.2019.03.031 |
[35] | Z. L. Zhao, L. C. He, Y. B. Gao, Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin-Ono equation in fluid mechanics, Complexity, 2019 (2019), 8249635. |
[36] | Z. L. Zhao, B. Han, Residual symmetry, Backlund transformation and CRE solvability of a (2+1)-dimensional nonlinear system, Nonlinear Dyn., 94 (2018), 461-474. doi: 10.1007/s11071-018-4371-2 |
[37] | Y. F. Hua, B. L. Guo, W. X. Ma, et al. Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model., 74 (2019), 184-198. doi: 10.1016/j.apm.2019.04.044 |
[38] | C. J. Wang, Z. D. Dai, C. F. Liu, Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation, Mediterr. J. Math., 13 (2016), 1087-1098. doi: 10.1007/s00009-015-0528-0 |
[39] | J. C. Chen, Z. Y. Ma, Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a (2+1)-dimensional Korteweg-de Vries equation, Appl. Math. Lett., 64 (2017), 87-93. doi: 10.1016/j.aml.2016.08.016 |
[40] | B. Q. Li, Y. L. Ma, L. P. Mo, et al. The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation, Comput. Math. Appl., 74 (2017), 504-512. doi: 10.1016/j.camwa.2017.04.036 |
[41] | B. Q. Li, Y. L. Ma, T. M. Yang, The oscillating collisions between the three solitons for a dual-mode fiber coupler system, Superlattice Microst., 110 (2017), 126-132. doi: 10.1016/j.spmi.2017.08.054 |
[42] | B. Q. Li, Y. L. Ma, Solitons resonant behavior for a waveguide directional coupler system in optical fibers, Opt. Quant. Electron., 50 (2018), 270. |
[43] | S. Wang, X. Y. Tang, S. Y. Lou, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation, Chaos Solitons Fractals, 21 (2004), 231-239. doi: 10.1016/j.chaos.2003.10.014 |
[44] | W. T. Zhu, S. H. Ma, J. P. Fang, et al. Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiffsystem, Chinese Phys. B, 23 (2014), 060505. |
[45] | M. J. Ablowitz, H. Segur, On the evolution of packets of water waves, J. Fluid. Mech., 92 (1979), 691-715. doi: 10.1017/S0022112079000835 |
[46] | E. Infeld, G. Rowlands, 3 dimensional stability of Korteweg-de Vries waves and solitons, Acta Phys. Pol. A, 56 (1979), 329-332. doi: 10.1063/1.32091 |
[47] | E. A. Kuznetsov, S. K. Turitsyn, Two- and three-dimensional solitons in weakly dispersive media, J. Exp. Theor. Phys., 55 (1982), 844-847. |
[48] | W. X. Ma, Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations, Commun. Nonlinear Sci., 16 (2011), 2663-2666. doi: 10.1016/j.cnsns.2010.10.003 |
[49] | C. Qian, J. G. Rao, Y. B. Liu, et al. Rogue waves in the three-dimensional Kadomtsev-Petviashvili equation, Chinese Phys. Lett., 33 (2016), 110201. |
[50] | M. Khalfallah, New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation, Commun. Nonlinear Sci., 14 (2009), 1169-1175. doi: 10.1016/j.cnsns.2007.11.010 |
[51] | D. I. Sinelshchikov, Comment on: New exact traveling wave solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation, Commun. Nonlinear Sci., 15 (2010), 3235-3236. doi: 10.1016/j.cnsns.2009.11.028 |
[52] | W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379 (2015), 1975-1978. doi: 10.1016/j.physleta.2015.06.061 |
[53] | W. X. Ma, Z. Y. Qin, X. Lu, Lump solutions to dimensionally reduced -gKP and -gBKP equations, Nonlinear Dyn., 84 (2016), 923-931. doi: 10.1007/s11071-015-2539-6 |
[54] | X. Lu, W. X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn., 85 (2016), 1217-1222. doi: 10.1007/s11071-016-2755-8 |
[55] | W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys., 133 (2018), 10-16. doi: 10.1016/j.geomphys.2018.07.003 |
[56] | H. Q. Sun, A. H. Chen, Lump and lump kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61. doi: 10.1016/j.aml.2016.12.008 |
[57] | R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, UK, 2004. |
[58] | D. S. Wang, B. L. Guo, X. L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equations, 266 (2019), 5209-5253. doi: 10.1016/j.jde.2018.10.053 |
[59] | D. S. Wang, X. L. Wang, Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal-Real, 41 (2018), 334-361. doi: 10.1016/j.nonrwa.2017.10.014 |