Citation: Emily M. Barker, Ashli R. Toles, Kyle A. Guess, Janice Paige Buchanan. C60 and Sc3N@C80(TMB-PPO) derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites[J]. AIMS Materials Science, 2016, 3(3): 965-988. doi: 10.3934/matersci.2016.3.965
[1] |
Arbogast JW, Darmanyan AP, Foote CS, et al. (1991) Photophysical properties of sixty atom carbon molecule (C60). J Phys Chem 95: 11–12. doi: 10.1021/j100154a006
![]() |
[2] |
Ching WY, Huang MZ, Xu YN, et al. (1991) First-principles calculation of optical properties of the carbon sixty-atom molecule in the fcc. lattice. Phys Rev Lett 67: 2045–2048. doi: 10.1103/PhysRevLett.67.2045
![]() |
[3] |
Maser W, Roth S, Anders J, et al. (1992) P-Type doping of C60 fullerene films. Synth Met 51: 103–108. doi: 10.1016/0379-6779(92)90259-L
![]() |
[4] | Sun Y-P, Lawson GE, Riggs JE, et al. (1998) Photophysical and Nonlinear Optical Properties of [60]Fullerene Derivatives. J Phys Chem A 102: 5520–5528. |
[5] |
Accorsi G, Armaroli N (2010) Taking Advantage of the Electronic Excited States of [60]-Fullerenes. J Phys Chem C 114: 1385–1403. doi: 10.1021/jp9092699
![]() |
[6] | Allemand PM, Khemani KC, Koch A, et al. (1991) Organic molecular soft ferromagnetism in a fullerene C60. Science 253: 301–303. |
[7] | Stephens PW, Cox D, Lauher JW, et al. (1992) Lattice structure of the fullerene ferromagnet TDAE-C60. Nature 355: 331–332. |
[8] | Hebard AF, Rosseinsky MJ, Haddon RC, et al. (1991) Superconductivity at 18 K in potassium-doped fullerene (C60). Nature 350: 600–601. |
[9] | Dubois D, Moninot G, Kutner W, et al. (1992) Electroreduction of Buckminsterfullerene, C60, in aprotic solvents. Solvent, supporting electrolyte, and temperature effects. J Phys Chem 96: 7137–7145. |
[10] |
Schon TB, Di Carmine PM, Seferos DS (2014) Polyfullerene Electrodes for High Power Supercapacitors. Adv Energy Mater 4: 1301509–1301515. doi: 10.1002/aenm.201301509
![]() |
[11] |
Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene Nanocage Capacity for Hydrogen Storage. Nano Lett 8: 767–774. doi: 10.1021/nl071436g
![]() |
[12] |
Nadtochenko VA, Vasil'ev IV, Denisov NN, et al. (1993) Photophysical properties of fullerene C60: picosecond study of intersystem crossing. J Photochem Photobiol, A 70: 153–156. doi: 10.1016/1010-6030(93)85035-7
![]() |
[13] | Foote CS (1994) Photophysical and photochemical properties of fullerenes. Electron Transfer I. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 347–363. |
[14] | Sun R, Jin C, Zhang X, et al. (1994) Photophysical properties of C60. Wuli 23: 83–87. |
[15] |
Qu B, Chen SM, Dai LM (2000) Simulation analysis of ESR spectrum of polymer alkyl-C60 radicals formed by photoinitiated reactions of low-density polyethylene. Appl Magn Reson 19: 59–67. doi: 10.1007/BF03162261
![]() |
[16] |
Guldi DM, Asmus K-D (1997) Photophysical Properties of Mono- and Multiply-Functionalized Fullerene Derivatives. J Phys Chem A 101: 1472–1481. doi: 10.1021/jp9633557
![]() |
[17] |
McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J Am Chem Soc 114: 4412–4414. doi: 10.1021/ja00037a064
![]() |
[18] | Tzirakis MD, Orfanopoulos M (2013) Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology. Chem Rev 113: 5262–5321. |
[19] | Krusic PJ, Wasserman E, Keizer PN, et al. (1991) Radical reactions of C60. Science 254: 1183–1185. |
[20] |
Krusic PJ, Wasserman E, Parkinson BA, et al. (1991) Electron spin resonance study of the radical reactivity of C60. J Am Chem Soc 113: 6274–6275. doi: 10.1021/ja00016a056
![]() |
[21] |
Wu S-H, Sun W-Q, Zhang D-W, et al. (1998) Reaction of [60]fullerene with trialkylphosphine oxide. Tetrahedron Lett 39: 9233–9236. doi: 10.1016/S0040-4039(98)02131-5
![]() |
[22] |
Cheng F, Yang X, Fan C, et al. (2001) Organophosphorus chemistry of fullerene: synthesis and biological effects of organophosphorus compounds of C60. Tetrahedron 57: 7331–7335. doi: 10.1016/S0040-4020(01)00670-6
![]() |
[23] |
Cheng F, Yang X, Zhu H, et al. (2000) Synthesis and optical properties of tetraethyl methano[60]fullerenediphosphonate. Tetrahedron Lett 41: 3947–3950. doi: 10.1016/S0040-4039(00)00491-3
![]() |
[24] |
Liu Z-B, Tian J-G, Zang W-P, et al. (2003) Large optical nonlinearities of new organophosphorus fullerene derivatives. Appl Opt 42: 7072–7076. doi: 10.1364/AO.42.007072
![]() |
[25] |
Ford WT, Nishioka T, Qiu F, et al. (1999) Structure Determination and Electrochemistry of Products from the Radical Reaction of C60 with Azo(bisisobutyronitrile). J Org Chem 64: 6257–6262. doi: 10.1021/jo990346w
![]() |
[26] |
Ford WT, Nishioka T, Qiu F, et al. (2000) Dimethyl Azo(bisisobutyrate) and C60 Produce 1,4- and 1,16-Di(2-carbomethoxy-2-propyl)-1,x-dihydro[60]fullerenes. J Org Chem 65: 5780–5784. doi: 10.1021/jo000686d
![]() |
[27] |
Shustova NB, Peryshkov DV, Kuvychko IV, et al. (2011) Poly(perfluoroalkylation) of Metallic Nitride Fullerenes Reveals Addition-Pattern Guidelines: Synthesis and Characterization of a Family of Sc3N@C80(CF3)n (n = 2-16) and Their Radical Anions. J Am Chem Soc 133: 2672–2690. doi: 10.1021/ja109462j
![]() |
[28] |
Shu C, Slebodnick C, Xu L, et al. (2008) Highly Regioselective Derivatization of Trimetallic Nitride Templated Endohedral Metallofullerenes via a Facile Photochemical Reaction. J Am Chem Soc 130: 17755–17760. doi: 10.1021/ja804909t
![]() |
[29] |
Shu C, Cai T, Xu L, et al. (2007) Manganese(III)-Catalyzed Free Radical Reactions on Trimetallic Nitride Endohedral Metallofullerenes. J Am Chem Soc 129: 15710–15717. doi: 10.1021/ja0768439
![]() |
[30] |
Shustova NB, Popov AA, Mackey MA, et al. (2007) Radical Trifluoromethylation of Sc3N@C80. J Am Chem Soc 129: 11676–11677. doi: 10.1021/ja074332g
![]() |
[31] |
Cardona CM, Kitaygorodskiy A, Echegoyen L (2005) Trimetallic nitride endohedral metallofullerenes: Reactivity dictated by the encapsulated metal cluster. J Am Chem Soc 127: 10448–10453. doi: 10.1021/ja052153y
![]() |
[32] | Yu G, Gao J, Hummelen JC, et al. (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270: 1789–1791. |
[33] |
Troshin PA, Hoppe H, Renz J, et al. (2009) Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells. Adv Funct Mater 19: 779–788. doi: 10.1002/adfm.200801189
![]() |
[34] |
Jiao F, Liu Y, Qu Y, et al. (2010) Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48: 2231–2243. doi: 10.1016/j.carbon.2010.02.032
![]() |
[35] |
Xu J-Y, Su Y-Y, Cheng J-S, et al. (2010) Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats. Carbon 48: 1388–1396. doi: 10.1016/j.carbon.2009.12.029
![]() |
[36] |
Mikawa M, Kato H, Okumura M, et al. (2001) Paramagnetic Water-Soluble Metallofullerenes Having the Highest Relaxivity for MRI Contrast Agents. Bioconjugate Chem 12: 510–514. doi: 10.1021/bc000136m
![]() |
[37] |
Chen C, Xing G, Wang J, et al. (2005) Multihydroxylated [Gd@C82(OH)22]n Nanoparticles: Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Lett 5: 2050–2057. doi: 10.1021/nl051624b
![]() |
[38] |
Aoshima H, Kokubo K, Shirakawa S, et al. (2009) Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci 14: 69–72. doi: 10.4265/bio.14.69
![]() |
[39] |
Guldi DM, Asmus K-D (1999) Activity of water-soluble fullerenes towards ·OH-radicals and molecular oxygen. Radiat Phys Chem 56: 449–456. doi: 10.1016/S0969-806X(99)00325-4
![]() |
[40] |
Lai HS, Chen WJ, Chiang LY (2000) Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J Surg 24: 450–454. doi: 10.1007/s002689910071
![]() |
[41] |
Sun D, Zhu Y, Liu Z, et al. (1997) Active oxygen radical scavenging ability of water-soluble fullerenols. Chin Sci Bull 42: 748–752. doi: 10.1007/BF03186969
![]() |
[42] |
Dugan LL, Gabrielsen JK, Yu SP, et al. (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3: 129–135. doi: 10.1006/nbdi.1996.0013
![]() |
[43] | Chiang LY, Lu F-J, Lin J-T (1995) Free radical scavenging activity of water-soluble fullerenols. J Chem Soc, Chem Commun: 1283–1284. |
[44] |
Xiao L, Takada H, Maeda K, et al. (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother 59: 351–358. doi: 10.1016/j.biopha.2005.02.004
![]() |
[45] |
Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112: 1058–1062. doi: 10.1289/ehp.7021
![]() |
[46] | Hamano T, Okuda K, Mashino T, et al. (1997) Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Chem Commun 21–22. |
[47] |
Guldi DM, Prato M (2000) Excited-State Properties of C60 Fullerene Derivatives. Acc Chem Res 33: 695–703. doi: 10.1021/ar990144m
![]() |
[48] |
Jensen AW, Daniels C (2003) Fullerene-Coated Beads as Reusable Catalysts. J Org Chem 68: 207–210. doi: 10.1021/jo025926z
![]() |
[49] |
Jensen AW, Maru BS, Zhang X, et al. (2005) Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Lett 5: 1171–1173. doi: 10.1021/nl0502975
![]() |
[50] |
Foote CS (1994) Photophysical and photochemical properties of fullerenes. Top Curr Chem 169: 347–363. doi: 10.1007/3-540-57565-0_80
![]() |
[51] |
McCluskey DM, Smith TN, Madasu PK, et al. (2009) Evidence for Singlet-Oxygen Generation and Biocidal Activity in Photoresponsive Metallic Nitride Fullerene-Polymer Adhesive Films. ACS Appl Mater Interfaces 1: 882–887. doi: 10.1021/am900008v
![]() |
[52] | Alberti MN, Orfanopoulos M (2010) Recent mechanistic insights in the singlet oxygen ene reaction. Synlett 999–1026. |
[53] | Foote CS, Wexler S, Ando W (1965) Singlet oxygen. III. Product selectivity. Tetrahedron Lett 4111–4118. |
[54] | Dallas P, Rogers G, Reid B, et al. (2016) Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70. Chem Phys 465–466: 28–39. |
[55] | Yano S, Naemura M, Toshimitsu A, et al. (2015) Efficient singlet oxygen generation from sugar pendant C60 derivatives for photodynamic therapy [Erratum to document cited in CA163:618143]. Chem Commun 51: 17631–17632. |
[56] |
Prat F, Stackow R, Bernstein R, et al. (1999) Triplet-State Properties and Singlet Oxygen Generation in a Homologous Series of Functionalized Fullerene Derivatives. J Phys Chem A 103: 7230–7235. doi: 10.1021/jp991237o
![]() |
[57] |
Tegos GP, Demidova TN, Arcila-Lopez D, et al. (2005) Cationic Fullerenes Are Effective and Selective Antimicrobial Photosensitizers. Chem Biol 12: 1127–1135. doi: 10.1016/j.chembiol.2005.08.014
![]() |
[58] |
Schinazi RF, Sijbesma R, Srdanov G, et al. (1993) Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother 37: 1707–1710. doi: 10.1128/AAC.37.8.1707
![]() |
[59] | Dai L (1999) Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications. Polym Adv Technol 10: 357–420. |
[60] |
Phillips JP, Deng X, Todd ML, et al. (2008) Singlet oxygen generation and adhesive loss in stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene- block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. J Appl Polym Sci 109: 2895–2904. doi: 10.1002/app.28337
![]() |
[61] |
Lundin JG, Giles SL, Cozzens RF, et al. (2014) Self-cleaning photocatalytic polyurethane coatings containing modified C60 fullerene additives. Coatings 4: 614–629. doi: 10.3390/coatings4030614
![]() |
[62] |
Phillips JP, Deng X, Stephen RR, et al. (2007) Nano- and bulk-tack adhesive properties of stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene- block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer 48: 6773–6781. doi: 10.1016/j.polymer.2007.08.050
![]() |
[63] |
Samulski ET, DeSimone JM, Hunt MO, Jr., et al. (1992) Flagellenes: nanophase-separated, polymer-substituted fullerenes. Chem Mater 4: 1153–1157. doi: 10.1021/cm00024a011
![]() |
[64] |
Chiang LY, Wang LY, Kuo C-S (1995) Polyhydroxylated C60 Cross-Linked Polyurethanes. Macromolecules 28: 7574–7576. doi: 10.1021/ma00126a042
![]() |
[65] | Ahmed HM, Hassan MK, Mauritz KA, et al. (2014) Dielectric properties of C60 and Sc3N@C80 fullerenol containing polyurethane nanocomposites. J Appl Polym Sci 131: 40577–40588. |
[66] | Kokubo K, Takahashi R, Kato M, et al. (2014) Thermal and thermo-oxidative stability of thermoplastic polymer nanocomposites with arylated [60]fullerene derivatives. Polym Compos: 1–9. |
[67] |
Shin J, Nazarenko S, Phillips JP, et al. (2009) Physical and chemical modifications of thiol-ene networks to control activation energy of enthalpy relaxation. Polymer 50: 6281–6286. doi: 10.1016/j.polymer.2009.10.053
![]() |
[68] |
Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49: 1540–1573. doi: 10.1002/anie.200903924
![]() |
[69] |
Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: Chemistry of the past with promise for the future. J Polym Sci A Polym Chem 42: 5301–5338. doi: 10.1002/pola.20366
![]() |
[70] |
Cramer NB, Scott JP, Bowman CN (2002) Photopolymerizations of Thiol-Ene Polymers without Photoinitiators. Macromolecules 35: 5361–5365. doi: 10.1021/ma0200672
![]() |
[71] |
Li Q, Zhou H, Hoyle CE (2009) The effect of thiol and ene structures on thiol–ene networks: Photopolymerization, physical, mechanical and optical properties. Polymer 50: 2237–2245. doi: 10.1016/j.polymer.2009.03.026
![]() |
[72] |
Northrop BH, Coffey RN (2012) Thiol-Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality. J Am Chem Soc 134: 13804–13817. doi: 10.1021/ja305441d
![]() |
[73] |
Singh R, Goswami T (2011) Understanding of thermo-gravimetric analysis to calculate number of addends in multifunctional hemi-ortho ester derivatives of fullerenol. Thermochimica Acta 513: 60–67. doi: 10.1016/j.tca.2010.11.012
![]() |
[74] |
Barker EM, Buchanan JP (2016) Thiol-ene polymer microbeads prepared under high-shear and their successful utility as a heterogeneous photocatalyst via C60-capping. Polymer 92: 66–73. doi: 10.1016/j.polymer.2016.03.091
![]() |
[75] | Jockusch S, Turro NJ (1998) Phosphinoyl Radicals: Structure and Reactivity. A Laser Flash Photolysis and Time-Resolved ESR Investigation. J Am Chem Soc 120: 11773–11777. |
[76] |
Ruoff RS, Tse DS, Malhotra R, et al. (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97: 3379–3383. doi: 10.1021/j100115a049
![]() |
[77] | Ginzburg BM, Shibaev LA, Melenevskaja EY, et al. (2004) Thermal and Tribological Properties of Fullerene-Containing Composite Systems. Part 1. Thermal Stability of Fullerene-Polymer Systems. J Macromol Sci Phys 43: 1193–1230. |
[78] |
Leifer SD, Goodwin DG, Anderson MS, et al. (1995) Thermal decomposition of a fullerene mix. Phys Rev B Condens Matter 51: 9973–9981. doi: 10.1103/PhysRevB.51.9973
![]() |
[79] | Mackey MA (2011) Exploration in metallic nitride fullerenes and oxometallic fullerenes: A new class of metallofullerenes [Ph.D. Dissertation]. Hattiesburg, MS: The University of Southern Mississippi. |