Citation: David Montalvo, Manuel Herrera. Cathodoluminescence of N-doped SnO2 nanowires and microcrystals[J]. AIMS Materials Science, 2016, 3(2): 525-537. doi: 10.3934/matersci.2016.2.525
[1] | Yin XM, Li CC, Zhang M, et al. (2009) SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20: 455503–455509. |
[2] | Sambhaji SB, Gauri AT, Arif VS, et al. (2012) Structural analysis and dye-sensitized solar cell application of electrodeposited tin oxide nanoparticles. Mater Lett 79: 29–31. |
[3] | Cannella G, Principato F, Foti M, et al. (2011) Carrier transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. J Appl Phys 110: 024502–24510. |
[4] | Zhang SG, Yin SF, Wei YD, et al. (2012) Novel MgO–SnO2 Solid Superbase as a High-Efficiency Catalyst for One-Pot Solvent-Free Synthesis of Polyfunctionalized 4H-pyran Derivatives. Catal Lett 142: 608–614. |
[5] | Fitzgerald CB, Venkatesan M, Dorneles LS, et al. (2006) Magnetism in dilute magnetic oxide thin films based on SnO2. Phys Rev B 74: 115307–115316. |
[6] | Chi J, Ge H, Wang J, et al. (2011) Synthesis and electrical and magnetic properties of Mn-doped SnO2 nanowires. J Appl Phys 110: 083907–083911. |
[7] | Srivastava SK, Lejay P, Hadj-Azzem A, et al. (2014) Non-magnetic Impurity Induced Magnetism in Li-Doped SnO2 Nanoparticles. J Supercond Nov Magn 27: 487–492. |
[8] | Srivastava SK, Lejay P, Barbara B, et al. (2010) Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Phys Rev B 82: 193203–193207. |
[9] | Datta S, Das B (1990) Electronic analog of the electro‐optic modulator. Appl Phys Lett 56: 665–667. doi: 10.1063/1.102730 |
[10] | Monsma DJ, Lodder JC, Popma TJA, et al. (1995) Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor. Phys Rev Lett 74: 5260–5263. doi: 10.1103/PhysRevLett.74.5260 |
[11] | Long R, English NJ (2009) Density functional theory description of the mechanism of ferromagnetism in nitrogen-doped SnO2. Phys Lett A 374: 319–322. doi: 10.1016/j.physleta.2009.10.036 |
[12] | Zhang Y, Liu H, Qin H, et al. (2011) Ferromagnetism induced by intrinsic defects and nitrogen substitution in SnO2 nanotube. Appl Surface Sci 257: 10206–10210. |
[13] | Sarkar A, Sanyal D, Nath P, et al. (2015) Defect driven ferromagnetism in SnO2: a combined study using density functional theory and positron annihilation spectroscopy. RCS Adv 5: 1148–1152. |
[14] | Wang H, Yan Y, Li K, et al. (2010) Role of intrinsic defects in ferromagnetism of SnO2: First-principles calculations. Phys Status Solid B 247: 444–448. |
[15] | Caskey CM, Seabold JA, Stevanovic V, et al. (2015) Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs. J Mater Chem C 3: 1389–1396. |
[16] | Ching WY, Rulis P (2006) Ab-initio calculations of the electronic structure and spectroscopic properties of spinel γ-Sn3N4. Phys Rev B 73: 45202. doi: 10.1103/PhysRevB.73.045202 |
[17] | Pan SS , Li GH , Wang LB, et al. (2009) Atomic nitrogen doping and p-type conduction in SnO2. Appl Phys Lett 95: 222112–222114. |
[18] | Kumar RR, Rao KN, Phani AR (2013) Self catalytic growth of SnO2 branched nanowires by thermal evaporation. Mater Lett 92: 243–246. |
[19] | Qin L, Xu J, Dong X, et al. (2008) The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19: 185705–185712. |
[20] | Herrera M, Maestre D, Cremades A, et al. (2013) Growth and Characterization of Mn Doped SnO2 Nanowires, Nanobelts, and Microplates. J Phys Chem C 117: 8997–9003. |
[21] | Maestre D, Cremades A, Piqueras J (2005) Growth and luminescence properties of micro- and nanotubes in sintered tin oxide. J Appl Phys 97: 44316–43319. doi: 10.1063/1.1851602 |
[22] | Luo S, Fan J, Liu W, et al. (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17: 1695–1699. |
[23] | Kim S, Lim T, Ju S (2011) Fabrication of reliable semiconductor nanowires by controlling crystalline structure. Nanotechnology 22: 305704–305709. |
[24] | Shajira PS, Junaid BM, Nair BB, et al. (2014) Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J Lumin 145: 425–429. |
[25] | Liu LZ, Xu JQ, Wu XL, et al. (2013) Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl Phys Lett 102: 031916–031919. |
[26] | Zhou XT, Heigl F, Murphy MW, et al. (2006) Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states. Appl Phys Lett 89: 213109–213111. |