Citation: Larysa Khomenkova, Mykola Baran, Jedrzej Jedrzejewski, Caroline Bonafos, Vincent Paillard, Yevgen Venger, Isaac Balberg, Nadiia Korsunska. Silicon nanocrystals embedded in oxide films grown by magnetron sputtering[J]. AIMS Materials Science, 2016, 3(2): 538-561. doi: 10.3934/matersci.2016.2.538
[1] | Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57: 1046–1048. doi: 10.1063/1.103561 |
[2] | Lehman V, Gosele U (1991) Porous silicon formation: A quantum wire effect. Appl Phys Lett 58: 856–858. doi: 10.1063/1.104512 |
[3] | Shimizu-Iwayama T, Nakao S, Saitoh K (1994) Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si. Appl Phys Lett 65: 1814–1816. doi: 10.1063/1.112852 |
[4] | Chen XY, Lu YF, Tang LJ, et al. (2005) Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. J Appl Phys 97: 014913. doi: 10.1063/1.1829789 |
[5] | Khomenkova L, Korsunska N, Yukhimchuk V, et al. (2003) Nature of visible luminescence and its excitation in Si-SiOx systems. J Lumin 102/103: 705–711. doi: 10.1016/S0022-2313(02)00628-2 |
[6] | Baran N, Bulakh B, Venger Ye, et al. (2009) The structure of Si–SiO2 layers with high excess Si content prepared by magnetron sputtering. Thin Solid Films 517: 5468–5473. doi: 10.1016/j.tsf.2009.01.154 |
[7] | Khomenkova L, Korsunska N, Baran M, et al. (2009) Structural and light emission properties of silicon-based nanostructures with high excess silicon content. Physica E 41: 1015–1018. doi: 10.1016/j.physe.2008.08.032 |
[8] | Qin GG, Liu XS, Ma SY, et al. (1997) Photoluminescence mechanism for blue-light-emitting porous silicon. Phys Rev B 55:12876–12879. doi: 10.1103/PhysRevB.55.12876 |
[9] | Khomenkova L, Korsunska N, Torchynska T, et al. (2002) Defect-related luminescence of Si/SiO2 layers. J Phys Condens Matter 14:13217–13221. doi: 10.1088/0953-8984/14/48/371 |
[10] | Sa’ar A (2009) Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry. J Nanophotonix 3: 032501 (56 pages). |
[11] | Balberg I (2011) Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J Appl Phys 110: 061301 (26 pages). |
[12] | Koshida N (2009) Device Applications of Silicon Nanocrystals and Nanostructures, Springer, 344 p. |
[13] | Jamal Deen M, Basu P K (2012) Silicon Photonics: Fundamentals and Devices, Wiley, 192 p. |
[14] | Khomenkova L, Portier X, Cardin J, et al. (2010) Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering. Nanotechnology 21: 285707 (10 pages). doi: 10.1088/0957-4484/21/28/285707 |
[15] | Steimle RF, Muralidhar R, Rao R, et al. (2007) Silicon nanocrystal non-volatile memory for embedded memory scaling. Microelectronics Reliability 47:585–592. doi: 10.1016/j.microrel.2007.01.047 |
[16] | Baron T, Fernandes A, Damlencourt JF, et al. (2003) Growth of Si nanocrystals on alumina and integration in memory devices. Appl Phys Lett 82: 4151–4153. |
[17] | Pillonnet-Minardi A, Marty O, Bovier C, et.al. (2001) Optical and structural analysis of Eu3+-doped alumina planar waveguides elaborated by the sol–gel process, Optical Materials 16: 9–13. |
[18] | Kenyon AJ (2002) Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics 26: 225–284 |
[19] | Mikhaylov AN, Belov AI, Kostyuk AB, et al. (2012) Peculiarities of the formation and properties of light-emitting structures based on ion-synthesized silicon nanocrystals in SiO2 and Al2O3 matrices. Physics of the Solid State (St.Petersburg, Russia) 54: 368–382. doi: 10.1134/S1063783412020175 |
[20] | Yerci S, Serincan U, Dogan I, et al. (2006) Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence. J Appl Phys 100: 074301 (5 pages). doi: 10.1063/1.2355543 |
[21] | Núñez-Sánchez S, Serna R, García López J, et al. (2009) Tuning the Er3+ sensitization by Si nanoparticles in nanostructured as-grown Al2O3 films. J Appl Phys 105: 013118 (5 pages). doi: 10.1063/1.3065520 |
[22] | Bi L, Feng JY (2006) Nanocrystal and interface defects related photoluminescence in silicon-rich Al2O3 films. J Lumin 121:95–101. doi: 10.1016/j.jlumin.2005.10.007 |
[23] | Korsunska N, Khomenkova L, Kolomys O, et al. (2013) Si-rich Al2O3 films grown by RF magnetron sputtering: structural and photoluminescence properties versus annealing treatment. Nanoscale Res Lett 8: 273. doi: 10.1186/1556-276X-8-273 |
[24] | Korsunska N, Stara T, Strelchuk V, et al. (2013) The influence of annealing on structural and photoluminescence properties of silicon-rich Al2O3 films prepared by co-sputtering. Physica E 51: 115–119. doi: 10.1016/j.physe.2012.12.002 |
[25] | Khomenkova L, Kolomys O, Baran M, et al. (2014) Structure and light emission of Si-rich Al2O3 and Si-rich SiO2 nanocomposites. Microelectr Eng. 125: 62–67. |
[26] | Khomenkova L, Kolomys O, Baran M, et al. (2014) Comparative investigation of structural and optical properties of Si-rich oxide films fabricated by magnetron sputtering. Adv Mat Res 854: 117–124. |
[27] | HORIBA: Spectroscopic Ellipsometry, DeltaPsi2 Software Platform. http://www.horiba.com/scientific/products/ellipsometers/software/ |
[28] | Hanak JJ (1970) The "Multiple-Sample Concept" in Materials Research: Synthesis, Compositional Analysis and Testing of Entire Multicomponent Systems. J Mater Sci 5: 964–971. doi: 10.1007/BF00558177 |
[29] | Abeles B, Sheng P, Coutts MD, et al. (1975) Structural and electrical properties of granular metal films. Adv Phys 24: 407–461. doi: 10.1080/00018737500101431 |
[30] | Farooq M, Lee ZH (2002) Optimization of the sputtering process for depositing composite thin films. J Korean Phys Soc 40: 511–516. |
[31] | Khomenkova L, Korsunska N, Sheinkman M, et al. (2007) Chemical composition and light emission properties of Si-rich-SiOx layers prepared by magnetron sputtering. Semicond Phys Quantum Electron Optoelectron 10: 21–25. |
[32] | Charvet S, Madelon R, Gourbilleau F, et al. (1999) Spectroscopic ellipsometry analyses of sputtered Si/SiO2 nanostructures. J Appl Phys 85: 4032 (8 pages). |
[33] | Buiu O, Davey W, Lu Y, et al. (2008) Ellipsometric analysis of mixed metal oxides thin films. Thin Solid Films 517: 453–455. |
[34] | Forouhi AR, Bloomer I (1986) Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys Rev B 34: 7018–7026. doi: 10.1103/PhysRevB.34.7018 |
[35] | Jelisson GE Jr, Modine FA (1996) Parameterization of the optical functions of amorphous materials in the interband region. Appl Phys Lett 69: 371–373. doi: 10.1063/1.118064 |
[36] | Serenyi M, Lohner T, Petrik P, et al. (2007) Comparative analysis of amorphous silicon and silicon nitride multilayer by spectroscopic ellipsometry and transmission electron microscopy. Thin Solid Films 515: 3559–3562. doi: 10.1016/j.tsf.2006.10.137 |
[37] | Houska J, Blazek J, Rezek J, et al. (2012) Overview of optical properties of Al2O3 films prepared by various techniques. Thin Solid Films 520: 5405–5408. doi: 10.1016/j.tsf.2012.03.113 |
[38] | Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik 416: 665–679. |
[39] | Khomenkova L, Labbé C, Portier X, et al. (2013) Undoped and Nd3+ doped Si‐based single layers and superlattices for photonic applications. Phys Stat Sol (a) 210: 1532–1543. doi: 10.1002/pssa.201200942 |
[40] | Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58: 739–741. |
[41] | Morales M, Leconte Y, Rizk R, et al. (2005) Structural and microstructural characterization of nanocrystalline silicon thin films obtained by radio-frequency magnetron sputtering. J Appl Phys 97: 034307. doi: 10.1063/1.1841461 |
[42] | Schamm S, Bonafos C, Coffin H, et al. (2008) Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS. Ultramicroscopy 108: 346–357. doi: 10.1016/j.ultramic.2007.05.008 |
[43] | Skuja LN, Silin AR (1979) Optical properties and energetic structure of non-bridging oxygen centers in vitreous SiO2. Phys Stat Sol A 56: K11–K13. doi: 10.1002/pssa.2210560149 |
[44] | Munekuni S, Yamanaka T, Shimogaichi Y, et al. (1990) Various types of nonbridging oxygen hole center in high‐purity silica glass. J Appl Phys 68: 1212–1217. doi: 10.1063/1.346719 |
[45] | Bratus’ VYa, Yukhinchuk VA, Berezhinsky LI, et al. (2001) Structural transformations and silicon nanocrystallite formation in SiOx films. Semiconductors 35: 821–826. doi: 10.1134/1.1385719 |
[46] | Prokes SM, Carlos WE (1995) Oxygen defect center red room temperature hotoluminescence from freshly etched and oxidized porous silicon. J Appl Phys 78: 2671–2674. doi: 10.1063/1.360716 |
[47] | Torchyska TV, Korsunska NE, Khomekova LYu, et al. (2000) Suboxide-related centre as the source of the intense red luminescence of porous Si. Microelectron Eng 51–52: 485–493. |
[48] | Song HZ, Bao XM (1997) Visible photoluminescence from silicon-ion-implanted SiO2 films and its multiple mechanisms. Phys Rev B 55: 6988–6993. doi: 10.1103/PhysRevB.55.6988 |
[49] | Dubin VM, Chazalviel J-N, Ozaman F (1993) In situ photoluminescence and photomodulated infrared study of porous silicon during etching and in ambient. J Lumin 57: 61–65. doi: 10.1016/0022-2313(93)90107-X |
[50] | Yin S, Xie E, Zhang C, et al. (2008) Photoluminescence character of Xe ion irradiated sapphire. Nucl Instr Methods B 12–13:2998–3001. |
[51] | Kokonou M, Nassiopoulou AG, Travlos A (2003) Structural and photoluminescence properties of thin alumina films on silicon, fabricated by electrochemistry. Mater Sci Eng B 101: 65–70. doi: 10.1016/S0921-5107(02)00653-0 |
[52] | Dogan I, Yildiz I, Turan R (2009) PL and XPS depth profiling of Si/Al2O3 co-sputtered films and evidence of the formation of silicon nanocrystals. Physica E 41: 976–981. doi: 10.1016/j.physe.2008.08.036 |
[53] | Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34: 149–154. doi: 10.1016/0031-8914(67)90062-6 |
[54] | O’Donnell KP, Chen X (1991) Temperature dependence of semiconductor band gaps. Appl Phys Lett 58: 2925–2927. |
[55] | Peng X-H, Alizadeh A, Bhate N, et al. (2007) First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J Phys Condens Matter 19: 266212 (9 pages). doi: 10.1088/0953-8984/19/26/266212 |
[56] | Menendez J, Cardona M (1984) Temperature dependence of the first-order Raman scattering by phonos in Si, Ge, and a-Sn: Anharmonic effects. Phys Rev B 29: 2051–2059. doi: 10.1103/PhysRevB.29.2051 |
[57] | Lautenschlager P, Garriga M, Vina L, et al. (1987) Temperature dependence of the dielectric function and interband critical points in silicon. Phys Rev B 36: 4821–4830. doi: 10.1103/PhysRevB.36.4821 |
[58] | Steasman A, Afanas’ev VV (1997) Point defect generation in SiO2 by interaction with SiO at elevated temperatures. Microelectr Eng 36: 201–204. doi: 10.1016/S0167-9317(97)00048-8 |
[59] | Jones BJ, Barklie RC (2005) Elecron paramagnetic resonance evolution of defects at the (100)Si/Al2O3 interface. J Phys D Appl Phys 38: 1178–1181. doi: 10.1088/0022-3727/38/8/013 |
[60] | Nast O, Wenham SR (2000) Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J Appl Phys 88: 124–132. doi: 10.1063/1.373632 |