Citation: R.A. Silva, C.O. Soares, R. Afonso, M.D. Carvalho, A.C. Tavares, M.E. Melo Jorge, A. Gomes, M.I. da Silva Pereira, C.M. Rangel. Synthesis and electrocatalytic properties of La0.8Sr0.2FeO3−δ perovskite oxide for oxygen reactions[J]. AIMS Materials Science, 2017, 4(4): 991-1009. doi: 10.3934/matersci.2017.4.991
[1] | Lee J, Jeonga B, Ocona JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13: 309–321. doi: 10.1016/j.cap.2012.08.008 |
[2] | Jorissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155: 23–32. doi: 10.1016/j.jpowsour.2005.07.038 |
[3] | Kong FD, Zhang S, Yin GP, et al. (2012) Preparation of Pt/Irx(IrO2)10−x bifunctional oxygen catalyst for unitized regenerative fuel cell. J Power Sources 210: 321–326. |
[4] | Jung HY, Park S, Popov BN (2009) Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell. J Power Sources 191: 357–361. |
[5] | Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152: 1–15. doi: 10.1016/j.jpowsour.2005.05.098 |
[6] | Pettersson J, Ramsey B, Harrison D (2006) A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J Power Sources 157: 28–34. doi: 10.1016/j.jpowsour.2006.01.059 |
[7] | Park S, Shao YY, Liu J, et al. (2012) Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energ Environ Sci 5: 9331–9344. doi: 10.1039/c2ee22554a |
[8] | Cheng FY, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41: 2172–2192. doi: 10.1039/c1cs15228a |
[9] | Chen ZW, Higgins D, Yu AP, et al. (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energ Environ Sci 4: 3167–3192. doi: 10.1039/c0ee00558d |
[10] | Shao YY, Park S, Xiao J, et al. (2012) Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2: 844–857. doi: 10.1021/cs300036v |
[11] | Othman R, Dicks AL, Zhu ZH (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energ 37: 357–372. doi: 10.1016/j.ijhydene.2011.08.095 |
[12] | Prakash J, Tryk D, Yeager E (1990) Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications. J Power Sources 29: 413–422. doi: 10.1016/0378-7753(90)85014-4 |
[13] | Rios E, Gautier JL, Poillerat G, et al. (1998) Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system. Electrochim Acta 44: 1491–1497. doi: 10.1016/S0013-4686(98)00272-2 |
[14] | Nikolova V, Iliev P, Petrov K, et al. (2008) Electrocatalysts for bifunctional oxygen/air electrodes. J Power Sources 185: 727–733. doi: 10.1016/j.jpowsour.2008.08.031 |
[15] | Chang YM, Wu PW, Wu CY, et al. (2009) Synthesis of La0.6Ca0.4Co0.8IrO3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources 189: 1003–1007. |
[16] | Tulloch J, Donne SW (2009) Activity of perovskite La1−xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes. J Power Sources 188: 359–366. doi: 10.1016/j.jpowsour.2008.12.024 |
[17] | Zhuang S, Huang K, Huang C, et al. (2011) Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium. J Power Sources 196: 4019–4025. |
[18] | Wu X, Scott K (2012) A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells. J Power Sources 206: 14–19. doi: 10.1016/j.jpowsour.2011.12.052 |
[19] | Jin C, Cao X, Zhang L, et al. (2013) Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J Power Sources 241: 225–230. |
[20] | Meadowcroft DB (1970) Low-cost oxygen electrode material. Nature 226: 847–848. doi: 10.1038/226847a0 |
[21] | Tejuca LG, Fierro JLG, Tascon JMD (1989) Structure and reactivity of perovskite-type oxides. Adv Catal 36: 237–328. |
[22] | Boivin JC, Mairesse G (1998) Recent material developments in fast oxide ion conductors. Chem Mater 10: 2870–2888. doi: 10.1021/cm980236q |
[23] | White JH, Sammells AF (1993) Perovskite anode electrocatalysis for direct methanol fuel cells. J Electrochem Soc 140: 2167–2177. doi: 10.1149/1.2220791 |
[24] | Yu HC, Fung KZ, Guo TC, et al. (2004) Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim Acta 50: 811–816. doi: 10.1016/j.electacta.2004.01.121 |
[25] | Velraj S, Zhu JH (2013) Sm0.5Sr0.5CoO3−δ—A new bi-functional catalyst for rechargeable metal-air battery applications. J Power Sources 227: 48–52. |
[26] | Wang L, Ara M, Wadumesthrige K, et al. (2013) Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. J Power Sources 234: 8–15. doi: 10.1016/j.jpowsour.2013.01.037 |
[27] | Noroozifar M, Khorasani-Motlagh M, Ekrami-Kakhki MS, et al. (2014) Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J Power Sources 248: 130–139. doi: 10.1016/j.jpowsour.2013.09.091 |
[28] | Peňa MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101: 1981–2018. doi: 10.1021/cr980129f |
[29] | Armstrong NH, Duncana KL, Wachsman ED (2013) Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials. Phys Chem Chem Phys 15: 2298–2308. doi: 10.1039/c2cp42919e |
[30] | Marti PE (1994) Influence of the A-site cation in AMnO3+x and AFeO3+x (A = La, Pr, Nd and Gd) perovskite-type oxides on the catalytic activity for methane combustion. Catal Lett 26: 71–84. doi: 10.1007/BF00824033 |
[31] | Swette L, Kackley N, McCatty SA (1991) Oxygen electrodes for rechargeable alkaline fuel cells. III. J Power Sources 36: 323–339. doi: 10.1016/0378-7753(91)87010-9 |
[32] | Kannan AM, Shukla AK, Sathyanarayana SJ (1989) Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries. J Power Sources 25: 141–150. doi: 10.1016/0378-7753(89)85006-2 |
[33] | Kannan AM, Shukla AK (1990) Rechargeable iron/air cells employing bifunctional oxygen electrodes of oxide pyrochlores. J Power Sources 35: 113–121. |
[34] | Swette L, Kackley N (1990) Oxygen electrodes for rechargeable alkaline fuel cells – II. J Power Sources 29: 423–436. doi: 10.1016/0378-7753(90)85015-5 |
[35] | Soares CO, Carvalho MD, Jorge MEM, et al. (2012) High Surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media. J Appl Electrochem 42: 325–332. |
[36] | Soares CO, Silva RA, Carvalho MD, et al. (2013) Oxide loading effect on the electrochemical performance of LaNiO3 coatings in alkaline media. Electrochim Acta 89: 106–113. doi: 10.1016/j.electacta.2012.11.040 |
[37] | Silva RA, Soares CO, Carvalho MD, et al. (2014) Stability of LaNiO3 gas diffusion oxygen electrodes. J Solid State Electr 18: 821–831. |
[38] | Neburchilov V, Wang H, Martin JJ, et al. (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195: 1271–1291. doi: 10.1016/j.jpowsour.2009.08.100 |
[39] | Manoharan R, Shukla AK (1985) Oxide supported carbon/air electrodes for alkaline solutions power devices. Electrochim Acta 30: 205–209. doi: 10.1016/0013-4686(85)80083-9 |
[40] | Karlsson G (1985) Perovskite catalysts for air electrodes. Electrochim Acta 30: 1555–1561. doi: 10.1016/0013-4686(85)80019-0 |
[41] | Wang W, Huang Y, Jung S, et al. (2006) A Comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes. J Electrochem Soc 153: A2066–A2070. doi: 10.1149/1.2345583 |
[42] | Patrakeev MV, Bahteeva JA, Mitberg EB, et al. (2003) Electron/hole and ion transport in La1−xSrxFeO3−δ. J Solid State Chem 172: 219–231. |
[43] | Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. II. Electrochemical behavior vs. materials science aspects. J Solid State Electr 12: 1367–1391. |
[44] | Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells a review. J Solid State Electr 14: 1125–1144. doi: 10.1007/s10008-009-0932-0 |
[45] | Anderson MD, Stevenson JM, Simner SP (2004) Reactivity of lanthanide ferrite SOFC cathodes with YSZ electrolyte. J Power Sources 129: 188–192. doi: 10.1016/j.jpowsour.2003.11.039 |
[46] | Kinoshita K (1992) Electrochemical Oxygen Technology, New York: John Wiley and Sons. |
[47] | Wang J, Zhang Y, Guo W, et al. (2013) Electrochemical behavior of La0.8Sr0.2FeO3 electrode with different porosities under cathodic and anodic polarization. Ceram Int 39: 5263–5270. |
[48] | Bronoel G, Grenier JC, Reby J (1980) Comparative behavior of various oxides in the various electrochemical reactions of oxygen evolution and reduction in alkaline medium. Electrochim Acta 25: 1015–1018. doi: 10.1016/0013-4686(80)87007-1 |
[49] | Bockris JOM, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131: 290–302. |
[50] | Wattiaux A, Grenier JC, Pouchard M, et al. (1987) Electrolytic oxygen evolution in alkaline medium of La1−xSrxFeO3−y perovskite/related ferrites I. Electrochemical study. J Electrochem Soc 134: 1714–1724. |
[51] | Suresh K, Panchapagesan TS, Patil KC (1999) Synthesis and properties of La1−xSrxFeO3. Solid State Ionics 126: 299–305. doi: 10.1016/S0167-2738(99)00248-9 |
[52] | Moçoteguy P, Brisse A (2013) A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrogen Energ 38: 1587–15902. |
[53] | Ramos T, Carvalho MD, Ferreira LP, et al. (2006) Structural and magnetic characterization of the series La1−xSrxFeO3. Chem Mater 18: 3860–3865. doi: 10.1021/cm060689s |
[54] | Zafar A, Imran Z, Rafiq MA, et al. (2011) Evidence of Pool-Frenkel conduction mechanism in Sr-doped lanthanum ferrite La1−xSrxFeO3 (0 ≤ x ≤ 1) system. 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC). |
[55] | Dann SE, Currie DB, Weller MT, et al. (1994) The effect of oxygen stoichiometry on phase relations and structure in the system La1−xSrxFeO3−δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J Solid State Chem 109: 134–144. doi: 10.1006/jssc.1994.1083 |
[56] | Li XX, Qu W, Zhang JJ, et al. (2011) Electrocatalytic activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes. J Electrochem Soc 158: A597–A604. |
[57] | Staud N, Ross PN (1986) The corrosion of carbon black anodes in alkaline electrolyte II. Acetylene black and the effect of oxygen evolution catalysts on corrosion. J Electrochem Soc 133: 1079–1084. |
[58] | Augustin CO, Selvan RK, Nagaraj R, et al. (2005) Effect of La3+ substitution on the structural, electrical and electrochemical properties of strontium ferrite by citrate combustion method. Mater Chem Phys 89: 406–411. doi: 10.1016/j.matchemphys.2004.09.028 |
[59] | Trasatti S, Petrii O (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63: 711–734. |
[60] | Miyahara Y, Miyazaki K, Fukutsuka T, et al. (2014) Catalytic roles of perovskite oxides in electrochemical oxygen reactions in alkaline media. J Electrochem Soc 161: F694–F697. doi: 10.1149/2.019406jes |
[61] | Mohamed R, Cheng X, Fabbri E, et al. (2015) Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity. J Electrochem Soc 162: F579–F586. doi: 10.1149/2.0861506jes |
[62] | Poux T, Napolsky FS, Dintzer T, et al. (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189: 83–92. doi: 10.1016/j.cattod.2012.04.046 |
[63] | Nishio K, Molla S, Okugaki T, et al. (2015) Effects of carbon on oxygen reduction and evolution reactions of gas-diffusion air electrodes based on perovskite-type oxides. J Power Sources 298: 236–240. doi: 10.1016/j.jpowsour.2015.08.070 |
[64] | Matsumoto Y, Yoneyama H, Tamura H (1977) Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel-oxide and related oxides. J Electroanal Chem 79: 319–326. doi: 10.1016/S0022-0728(77)80453-1 |
[65] | Parthasarathy A, Martin CR, Srinivasan S (1991) Investigations of the oxygen reduction reaction at the platinum nafion interface using a solid state electrochemical cell. J Electrochem Soc 138: 916–921. doi: 10.1149/1.2085747 |
[66] | Alegre C, Modica E, Aricò AS, et al. (2017) Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. J Electroanal Chem [In Press]. |
[67] | Wang J, Zhao H, Gao Y, et al. (2016) Ba0.5Sr0.5Co0.8Fe0.2O3−δ on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. Int J Hydrogen Energ 41: 10744–10754. |
[68] | Zhu Y, Zhou W, Yu J, et al. (2016) Enhancing electrocatalytic activity of perovskite oxides by tunning cation deficiency for oxygen reduction and evolution reactions. Chem Mater 28: 1691–1697. doi: 10.1021/acs.chemmater.5b04457 |
[69] | Alegre C, Modica E, Rodlert-Bacilieri M, et al. (2017) Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. Int J Hydrogen Energ [In Press]. |
[70] | Li X, Pletcher D, Russell AE, et al. (2013) A novel bifunctional oxygen GDE for alkaline secondary batteries. Electrochem Commun 34: 228–230. doi: 10.1016/j.elecom.2013.06.020 |
[71] | Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132: 13612–13614. doi: 10.1021/ja104587v |
[72] | Yuasa M, Yamazoe N, Shimanoe K (2011) Durability of carbon-supported La–Mn perovskite-base type of oxide for oxygen reduction catalysts in strong alkaline solutions. J Electrochem Soc 158: A411–A416. doi: 10.1149/1.3551499 |
[73] | Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution, Houston, Tex, United States: National Association of Corrosion Engineers. |
[74] | Karlson L, Lindström H (1986) Catalyst for oxygen evolution in bifunctional air-cathodes. J Mol Catal 38: 41–48. doi: 10.1016/0304-5102(86)87047-X |