Citation: Mica Grujicic, S. Ramaswami, Jennifer S. Snipes. Use of the Materials Genome Initiative (MGI) approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs)[J]. AIMS Materials Science, 2016, 3(3): 989-1021. doi: 10.3934/matersci.2016.3.989
[1] | Office of Science (2014) Basic Energy Sciences, Core Research Activities, Department of Energy. Available from: http://science.energy.gov/~/media/bes/pdf/brochures/bes-cras/2014-feb/BES_CRAs_FEB2014.pdf (accessed June 17, 2016). |
[2] | Luthra K (2014) Melt infiltrated SiC/SiC ceramic composites for industrial gas turbines and aircraft engines. GE Global Research Technical Report 2014GRC125. |
[3] | Grujicic M, Galgalikar R, Ramaswami S, et al. (2015) Multi-physics modeling and simulations of reactive melt infiltration process used in fabrication of ceramic-matrix composites (CMCs). Multidiscip Mod Mater Struct 11: 43–74. |
[4] | Grujicic M, Snipes JS, Yavari R, et al. (2015) Computational investigation of foreign object damage sustained by environmental barrier coatings (EBCs) and SiC/SiC ceramic-matrix composites (CMCs). Multidiscip Mod Mater Struct 11: 238–272. |
[5] | Grujicic M, Snipes JS, Galgalikar R, et al. Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites (CMCs). J Mater: Des Appl [in press], doi: 10.1177/1464420715600002. |
[6] | Grujicic M, Galgalikar R, Snipes JS, et al. (2016) Multi-length-scale material model for SiC/SiC ceramic-matrix composites (CMCs): inclusion of in-service environmental effects. J Mater Eng Perform 25: 199–219. doi: 10.1007/s11665-015-1850-1 |
[7] | Grujicic M, Galgalikar R, Snipes JS, et al. (2016) Material constitutive models for creep and rupture of SiC/SiC ceramic-matrix composites (CMCs) under multi-axial loading conditions. J Mater Eng Perform 25: 1697–1708. doi: 10.1007/s11665-016-2036-1 |
[8] | Corman GS and Luthra KL (2006) Melt Infiltrated Ceramic Composites (HIPERCOMP®) For Gas Turbine Engine Applications, Continuous Fiber Ceramic Composites Program Phase II Final Report, Niskayuna, NY: GE Global Research, Technical Report DOE/CE/41000-2. |
[9] | Grujicic M, Yavari R, Snipes JS, et al. (2014) All-atom molecular-level computational analyses of polyurea/fused-silica interfacial decohesion caused by impinging tensile stress-waves. Int J Struct Integr 5: 339–367. doi: 10.1108/IJSI-01-2014-0001 |
[10] | OSTP (2011) Materials genome initiative for global competitiveness. Washington, DC: Office of Science and Technology Policy. Available from: https://www.whitehouse.gov/sites/default/files/ microsites/ostp/materials_genome_initiative-final.pdf (accessed June 21, 2016). |
[11] | Drosback M (2013) The Materials Genome Initiative and Materials Innovation Infrastructure (presentation). Washington, DC: Office of Science and Technology Policy. Available from: https://hubzero.org/resources/1167/download/Cyberinfrastructure_for_the_Materials_Genome_Initiative.pdf (accessed June 17, 2016). |
[12] | Naserifar S, Liu L (2013) Toward a process-based molecular model of SiC membranes. Part 1. Development of a reactive force field. J Phys Chem C 117: 3308–3319. |
[13] | Grujicic M, Cao G, Singh R (2003) The effect of topological defects and oxygen adsorbates on the electronic transport properties of single-walled carbon nanotubes. Appl Surf Sci 211: 166–183. doi: 10.1016/S0169-4332(03)00224-1 |
[14] | Grujicic M, Cao G, Rao AM, et al. (2003) UV-light enhanced oxidation of carbon nanotubes through adsorption of polar molecules. Appl Surf Sci 214: 289–303. doi: 10.1016/S0169-4332(03)00361-1 |
[15] | Accelrys Software Inc. (2011) Discover Datasheet. Accelrys Software Inc.. Available from: http://accelrys.com/products/datasheets/discover.pdf (accessed June 21, 2016). |
[16] | Grujicic M, Megusar J, Erturk T (1986) Elastic moduli, yield stress and ductility of fully-crystallized Co84Nb10B6 metallic glass. Int J Rapid Solidif 2: 165–173. |
[17] | Roewer G, Herzog U, Trommer K, et al. (2002) Silicon Carbide—A Survey of synthetic approaches, properties and applications, In: Jansen M, Ed., High Performance Non-Oxide Ceramics I, Berlin: Springer-Verlag, 59–135. |
[18] | Monthioux M, Delverdier O (1996) Thermal behavior of (organosilicon) polymer-derived ceramics. V: Main facts and trends. J Eur Ceram Soc 16: 721–737. |
[19] | Grujicic M, Cao G, Gersten B (2002) An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes. Mater Sci Eng B 94: 247–259. doi: 10.1016/S0921-5107(02)00095-8 |
[20] | Grujicic M, Cao G, Gersten B (2002) Optimization of the chemical vapor deposition process for carbon nanotubes fabrication. Appl Surf Sci 191: 223–239. doi: 10.1016/S0169-4332(02)00210-6 |
[21] | Grujicic M, Cao G, Gersten B (2003) Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes. J Mater Sci 38: 1819–1830. doi: 10.1023/A:1023252432202 |
[22] | Grujicic M, Lai SG (1999) Kinetic Monte Carlo modeling of chemical vapor deposition of (111) oriented diamond film. J Mater Sci 34: 7–20. doi: 10.1023/A:1004488818266 |
[23] | Grujicic M, Lai SG (2000) Multi length-scale modeling of CVD of diamond: Part I: A combined reactor scale/atomic-scale analysis. J Mater Sci 35: 5359–5369. doi: 10.1023/A:1004851029978 |
[24] | Grujicic M, Lai SG (2000) Multi length-scale modeling of CVD of diamond: Part II: A combined atomic-scale/grain-scale analysis. J Mater Sci 35: 5371–5381. doi: 10.1023/A:1004803114048 |
[25] | Grujicic M, Lai SG (2000) Grain-scale modeling of microstructure evolution in CVD-grown polycrystalline diamond films. J Mater Synth Proces 8: 73–85. doi: 10.1023/A:1026517919085 |
[26] | Grujicic M, Lai SG (2001) Multi length-scale modeling of CVD of titanium nitride coatings. J Mater Sci 36: 2937–2953. doi: 10.1023/A:1017958621586 |
[27] | Gupte SM, Tsamopoulos JA (1990), An effective medium approach for modeling chemical vapor infiltration of porous ceramic materials. J Electrochem Soc 137: 1626–1638. |
[28] | Grujicic M, Cao G, Roy WN (2004) A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes reinforced polymeric materials. J Mater Sci 39: 4441–4449. doi: 10.1023/B:JMSC.0000034136.11779.96 |
[29] | Battaile CC, Srolovitz DJ, Butler JE (1991) Morphologies of diamond films from atomic-scale simulations of chemical vapor deposition. Diam Relat Mater 6: 1198–1206. |
[30] | Kee RJ, Rupley FM, Miller JA (1989) Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories Technical Report SAND89-8009. |
[31] | Surface Chemkin III User Manual, Sandia National Laboratories, San Diego, CA, 1996. |
[32] | Battaile CC, Srolovitz DJ, Butler JE (1997) A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: application to diamond. J Appl Phys 82: 6293–6300. doi: 10.1063/1.366532 |
[33] | Grujicic M, Zhang Y (1998) Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method. Mater Sci Eng A 251: 64–76. doi: 10.1016/S0921-5093(98)00647-9 |
[34] | Grujicic M, Zhao H (1998) Optimization of 316 stainless steel/alumina functionally graded material for reduction of damage induced by thermal residual stresses. Mater Sci Eng A 252: 117–132. doi: 10.1016/S0921-5093(98)00618-2 |
[35] | Huang J, Fadel GM, Blouin VY et al. (2002) Bi-objective optimization design of functionally gradient materials. Mater Des 23: 657–666. doi: 10.1016/S0261-3069(02)00048-1 |
[36] | Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1: 318–333. doi: 10.1063/1.1745010 |
[37] | Grujicic M, Cao G, Figliola RS (2001) Computer simulations of the evolution of solidification microstructure in the LENSTM rapid fabrication process. Appl Surf Sci 183: 43–57. doi: 10.1016/S0169-4332(01)00553-0 |
[38] | Miller RS, Cao G, Grujicic M (2001) Monte Carlo simulation of three-dimensional non-isothermal grain-microstructure evolution: application to LENS™ rapid fabrication. J Mater Synth Proces 9: 329–345. doi: 10.1023/A:1016304606563 |
[39] | Grujicic M, Cao G, Miller RS (2002) Computer modeling of the evolution of dendrite microstructure in binary alloys during non-isothermal solidification. J Mater Synth Proces 10: 191–203. doi: 10.1023/A:1023022214920 |
[40] | Grujicic M, Galgalikar R, Snipes JS, et al. (2013) Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwich-structures. Mater Des 51: 113–130. doi: 10.1016/j.matdes.2013.04.004 |
[41] | Kruger P (1993) On the relation between non-isothermal and isothermal Kolmogorov-Johnson-Mehl-Avrami crystallization kinetics. J Phys Chem Solids 54: 1549–1555. doi: 10.1016/0022-3697(93)90349-V |
[42] | Gore M, Grujicic M, Olson GB (1989) Thermally activated grain boundary motion through a dispersion of particles. Acta Metall 37: 2849–2854. doi: 10.1016/0001-6160(89)90320-9 |
[43] | Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19: 35–50. doi: 10.1016/0022-3697(61)90054-3 |
[44] | Grujicic M, Galgalikar R, Snipes JS, et al. Creep-behavior-based material selection for a clamping spring of ceramic-matrix composite inner-shroud in utility and industrial gas-turbine engines. J Mater: Des Appl [in press], doi: 10.1177/1464420715627658. |
[45] | Grujicic M, Galgalikar R, Ramaswami S, et al. (2016) Derivation, parameterization and validation of a creep deformation/rupture material constitutive model for SiC/SiC ceramic-matrix composites (CMCs). AIMS Mater Sci 3: 591–619. doi: 10.3934/matersci.2016.2.591 |
[46] | Grujicic M, Arokiaraj S (1993) Chemical compatibility between zirconia dispersion and gamma titanium aluminide matrix. Calphad 17: 133–140. doi: 10.1016/0364-5916(93)90013-2 |
[47] | Grujicic M, Arakere G, Bell WC, et al. (2010) Reliability-based design optimization for durability of ground-vehicle suspension-system components. J Mater Eng Perform 19: 301–313. doi: 10.1007/s11665-009-9482-y |
[48] | Singhal SC (1976) Thermodynamic analysis of high-temperature stability of silicon nitride and silicon carbide. Ceramurgia Int 2: 123–130. doi: 10.1016/0390-5519(76)90022-3 |
[49] | Sundman B, Jansson B, Anderson JO (1985) The Thermo-Calc databank system. Calphad 9: 153–190. doi: 10.1016/0364-5916(85)90021-5 |
[50] | Borgenstam A, Engström A, Höglund L, et al. (2000) DICTRA, a tool for simulation of diffusional transformations in alloys. J Phase Equilib 21: 269–280. doi: 10.1361/105497100770340057 |
[51] | TC-Prisma brochure (2013) Thermo-Calc Software. Available from: http://www.thermocalc.com/media/6026/tc-prisma-flyer-20130627.pdf (accessed June 21, 2016). |