We construct a toric generalised Kähler structure on CP2 and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.
Citation: Francesco Bonechi, Jian Qiu, Marco Tarlini. Generalised Kähler structure on CP2 and elliptic functions[J]. Journal of Geometric Mechanics, 2023, 15(1): 188-223. doi: 10.3934/jgm.2023009
[1] | Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948 |
[2] | Suxia Wang, Tiehong Zhao . New refinements of Becker-Stark inequality. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960 |
[3] | Zhenhua Su, Zikai Tang, Hanyuan Deng . Higher-order Randić index and isomorphism of double starlike trees. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596 |
[4] | Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830 |
[5] | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418 |
[6] | Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432 |
[7] | Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492 |
[8] | Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646 |
[9] | Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025 |
[10] | Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438 |
We construct a toric generalised Kähler structure on CP2 and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.
In [18] Ramanujan showed a total of 17 series for 1/π but he did not indicate how he arrived at these series. The Borwein brothers [5] gave rigorous proofs of Ramanujan's series for the first time and also obtained many new series for 1/π. Till now, many new Ramanujan's-type series for 1/π have been published, (see, for example, [4,6,8]). Chu [7], Liu [15,16] and Wei et al. [21,22] gave many π-formula with free parameters by means of gamma functions and hypergeometric series. Guillera [10] proved a kind of bilateral semi-terminating series related to Ramanujan-like series for negative powers of π. Moreover, Guillera and Zudilin [11] outlined an elementary method for proving numerical hypergeometric identities, in particular, Ramanujan-type identities for 1/π. Recently, q-analogues of Ramanujan-type series for 1/π have caught the interests of many authors (see, for example, [9,12,13,14,20,21]).
Although various definitions for gamma functions are used in the literature, we adopt the following definition [23, p.76]
1Γ(z)=zeγz∞∏n=1(1+zn)e−zn |
where γ is the Euler constant defined as
γ=limn→∞(1+12+⋯+1n−logn). |
It is easy to verify that Γ(1)=1,Γ(12)=√π and Γ(z+1)=zΓ(z). It follows that for every positive integer n, Γ(n)=(n−1)!.
For any complex α, we define the general rising shifted factorial by
(z)α=Γ(z+α)/Γ(z). | (1.1) |
Obviously, (z)0=1. For every positive integer n, we have
(z)n=Γ(z+n)/Γ(z)=z(z+1)⋯(z+n−1) |
and
(z)−n=Γ(z−n)/Γ(z)=1(z−1)(z−2)…(z−n). |
For convenience, we use the following compact notations
(a1,a2,…,am)n=(a1)n(a2)n…(am)n |
and
(a)(n1,n2,…,nm)=(a)n1(a)n2…(a)nm. |
Following [1,3], the hypergeometric series is defined by
r+1Fs[a0,a1,…,arb1,…,bs;z]=∞∑k=0(a0,a1,…,ar)k(b1,…,bs)kzkk!, |
where ai,bj(i=0,1,…,r,j=1,2,…,s) are complex numbers such that no zero factors appear in the denominators of the summand on the right hand side.
We let Fp:r;uq:s;v (p,q,r,s,u,v∈N0={0,1,2,…}) denote a general (Kampé de Fériet's) double hypergeometric function defined by (see [2,19])
Fp:r;uq:s;v[α1,…,αp:a1,…,ar;c1,…,cu;β1,…,βq:b1,…,bs;d1,…,dv;x,y]=∞∑m,n=0(α1,…,αp)m+n(a1,…,ar)m(c1,…,cu)n(β1,…,βq)m+n(b1,…,bs)m(d1,…,dv)nxmm!ynn!, |
where, for convergence of the double hypergeometric series,
p+r≤q+s+1andp+u≤q+v+1, |
with equality only when |x| and |y| are appropriately constrained (see, for details, [19,Eq 1.3(29),p.27]).
There exist numerous identities for such series. For example, we have
Theorem 1.1 (See [17,(30)] ) If Re(e−d)>0 and Re(d+e−a−b−c)>0, then
F0:3;31:1;1[−:a,b,c;d−a,d−b,d−c;d:e;d+e−a−b−c;1,1]=Γ(e)Γ(e+d−a−b−c)Γ(e−d)Γ(e−a)Γ(e−b)Γ(e−c). |
In [15], Liu used the general rising shifted factorial and the Gauss summation formula to prove the following four-parameter series expansions formula, which implies infinitely many Ramanujan type series for 1/π and π.
Theorem 1.2 For any complex α and Re(c−a−b)>0, we have
∞∑n=0(α)a+n(1−α)b+nn!Γ(c+n+1)=(α)a(1−α)bΓ(c−a−b)(α)c−b(1−α)c−a⋅sinπαπ. |
Motivated by Liu's work, in this paper we derive the following result from Theorem 1.1 which enables us to give many double series expansions for 1/π and π. To the best of our knowledge, most of the results in this paper have not previously appeared.
Theorem 1.3 If d∈N0,Re(e−d+σ−δ)>0 and Re(d+e−a−b−c+δ+σ−α−β−γ)>0, then
∞∑m,n=0(α)a+m(β)b+m(γ)c+m(δ−α)d−a+n(δ−β)d−b+n(δ−γ)d−c+nm!n!(δ+d)m+n(σ)e+m(δ+σ−α−β−γ)d+e−a−b−c+n=(α)a(β)b(γ)c(δ−α)d−a(δ−β)d−b(δ−γ)d−c(σ−δ)e−d(σ−α)e−a(σ−β)e−b(σ−γ)e−c⋅Γ(σ)Γ(σ−δ)Γ(δ+σ−α−β−γ)Γ(σ−α)Γ(σ−β)Γ(σ−γ). |
Several examples of such formulae are
∞∑m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π, |
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π, |
and
∞∑m,n=0(−23)2m(13)3nm!n!(n+1)!(2−3m)(−13)m+n=√3π3. |
The remainder of the paper is organized as follows. In section 2 we give the proof of Theorem 1.3. Sections 3 and 4 are devoted to the double series expansions for 1/π and π, respectively.
First of all, by making use of (1.1), Theorem 1.3 can be restated as follows:
∞∑m,n=0Γ(a+m)Γ(b+m)Γ(c+m)Γ(d−a+n)Γ(d−b+n)Γ(d−c+n)m!n!Γ(d+m+n)Γ(e+m)Γ(d+e−a−b−c+n)=Γ(a)Γ(b)Γ(c)Γ(d−a)Γ(d−b)Γ(d−c)Γ(e−d)Γ(d)Γ(e−a)Γ(e−b)Γ(e−c). | (2.1) |
From (1.1) it is easy to see that
Γ(a+α+m)=(α)a+mΓ(α), Γ(b+β+m)=(β)b+mΓ(β), Γ(c+γ+m)=(γ)c+mΓ(γ),Γ(d−a+δ−α+n)=(δ−α)d−a+nΓ(δ−α), Γ(d−b+δ−β+n)=(δ−β)d−b+nΓ(δ−β),Γ(d−c+δ−γ+n)=(δ−γ)d−c+nΓ(δ−γ), Γ(d+δ+m+n)=(δ)d+m+nΓ(δ)Γ(e+m+σ)=(σ)e+mΓ(σ), Γ(a+α)=(α)aΓ(α), Γ(b+β)=(β)bΓ(β), Γ(c+γ)=(γ)cΓ(γ),Γ(d−a+δ−α)=(δ−α)d−aΓ(δ−α), Γ(d−b+δ−β)=(δ−β)d−bΓ(δ−β),Γ(d−c+δ−γ)=(δ−γ)d−cΓ(δ−γ), Γ(e−d+σ−δ)=(σ−δ)e−dΓ(σ−δ),Γ(d+δ)=(δ)dΓ(δ),Γ(e−a+σ−α)=(σ−α)e−aΓ(σ−α),Γ(e−b+σ−β)=(σ−β)e−bΓ(σ−β), Γ(e−c+σ−γ)=(σ−γ)e−cΓ(σ−γ),Γ(d+e−a−b−c+δ+σ−α−β−γ)=(δ+σ−α−β−γ)d+e−a−b−cΓ(δ+σ−α−β−γ). |
and we realize that (δ)d+m+n=(δ)d(δ+d)m+n when d∈N0. Replacing(a,b,c,d,e) by (a+α,b+β,c+γ,d+δ,e+σ) in (2.1) and substituting above identities into the resulting equation, we get the desired result.
In this section we will use Theorem 1.3 to prove the following double series expansion formula for 1/π.
Theorem 3.1 If d∈N0,Re(e−d+1)>0 and Re(d+e−a−b−c+32)>0, then
∞∑m,n=0(12)(a+m,b+m,c+m,d−a+n,d−b+n,d−c+n)m!n!(d+1)m+n(2)e+m(32)d+e−a−b−c+n=(12)(a,b,c,d−a,d−b,d−c)(1)e−d(32)(e−a,e−b,e−c)⋅4π. |
Proof. Let (α,β,γ,δ,σ)=(12,12,12,1,2) in Theorem 1.3. We find that
∞∑m,n=0(12)(a+m,b+m,c+m,d−a+n,d−b+n,d−c+n)m!n!(d+1)m+n(2)e+m(32)d+e−a−b−c+n=(12)(a,b,c,d−a,d−b,d−c)(1)e−d(32)(e−a,e−b,e−c)⋅Γ(2)Γ(1)Γ(32)Γ3(32). | (3.1) |
Substituting Γ(32)=√π2 into (3.1) we obtain the result immediately. Putting (a,b,c)=(0,0,0) in Theorem 3.1 we get the following general double summation formula for 1/π with two free parameters.
Corollary 3.2 If d∈N0,Re(e−d+1)>0 and Re(d+e+32)>0, then
∞∑m,n=0(12)3(m,d+n)m!n!(d+1)m+n(2)e+m(32)d+e+n=4(12)3d(1)e−dπ(32)3e. |
Setting d=0 and e=k∈N0 in Corallary 3.2 we have the following result.
Proposition 3.3 Let k be a nonnegative integer. Then
∞∑m,n=0(12)3(m,n)m!n!(m+n)!(m+k+1)!(32+k)n=4k!π(32)2k. |
Example 3.1 (k=0 in Proposition 3.3).
∞∑m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π. |
If d=e=k∈N0 in Corollary 3.2 we achieve
Proposition 3.4 Let k be a nonnegative integer. Then
∞∑m,n=0(12)3(m,n+k)m!n!(k+1)m+n(m+k+1)!(32)n+2k=4π(2k+1)3. |
If we put k=0 into Proposition 3.4, then we can also get Example 3.1.
In this section we will prove the following theorem, which allows us to derive infinitely double series expansions for π.
Theorem 4.1 If d∈N0,Re(e−d−σ+1)>0 and Re(d+e−a−b−c+2)>0, then
∞∑m,n=0(σ−1)(a+m,b+m,c+m)(σ)(d−a+n,d−b+n,d−c+n)m!n!(2σ+d−1)m+n(σ)e+m(2)d+e−a−b−c+n=(σ−1)(a,b,c)(σ)(d−a,d−b,d−c)(1−σ)e−d(1)(e−a,e−b,e−c)⋅πsinσπ. |
Proof. Let (α,β,γ,δ)=(σ−1,σ−1,σ−1,2σ−1) in Theorem 1.3. We obtain that
∞∑m,n=0(σ−1)(a+m,b+m,c+m)(σ)(d−a+n,d−b+n,d−c+n)m!n!(2σ+d−1)m+n(σ)e+m(2)d+e−a−b−c+n=(σ−1)(a,b,c)(σ)(d−a,d−b,d−c)(1−σ)e−d(1)(e−a,e−b,e−c)⋅Γ(σ)Γ(1−σ)Γ(2)Γ3(1). | (4.1) |
Combining Γ(σ)Γ(1−σ)=πsinσπ with (4.1) we get the desired result immediately. Putting a=b=c=0 in Theorem 4.1 we obtain the following equation.
Corollary 4.2 If d∈N0,Re(e−d−σ+1)>0 and Re(d+e+2)>0, then
∞∑m,n=0(σ−1)3m(σ)3d+nm!n!(2σ+d−1)m+n(σ)e+m(2)d+e+n=(σ)3d(1−σ)e−d(1)3e⋅πsinσπ. |
Letting σ=12 in Corollary 4.2, we get the following proposition.
Proposition 4.3 If d∈N0,Re(e−d+12)>0 and Re(d+e+2)>0, then
∞∑m,n=0(−12)3m(12)3d+nm!n!(d)m+n(12)e+m(2)d+e+n=(12)3d(12)e−d(1)3eπ. |
When we set d=1 and e=k∈N={1,2,3…} in Proposition 4.3 we obtain
Proposition 4.4 If k is a positive integer, then
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+k+2)!(12)m+k=π(12)k−1(k!)3. |
Example 4.1 (k=1 in Proposition 4.4).
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π. |
Putting σ=13 in Corollary 4.2, we get the following proposition.
Proposition 4.5 If d∈N0,Re(e−d+23)>0 and Re(d+e+2)>0, then
∞∑m,n=0(−23)3m(13)3d+nm!n!(d−13)m+n(13)e+m(2)d+e+n=2√3π(13)3d(23)e−d3(1)3e. |
When we set d=0 and e=k∈N0 in Proposition 4.5 we obtain
Proposition 4.6 If k is a nonnegative integer, then
∞∑m,n=0(−23)3m(13)3nm!n!(−13)m+n(13)m+k(n+k+1)!=2√3π(23)k3k!3. |
Example 4.2 (k=0 in Proposition 4.6).
∞∑m,n=0(−23)2m(13)3nm!n!(n+1)!(2−3m)(−13)m+n=√3π3. |
Setting d=e=k∈N0 in Proposition 4.5, we get
Proposition 4.7 If k is a nonnegative integer, then
∞∑m,n=0(−23)3m(13+k)3nm!n!(n+2k+1)!(k−13)m+n(13)m+k=2√3π3k!3. |
Therefore, Example 4.2 can also be deduced by fixing k=0 in the above equation.
Example 4.3 (k=1 in Proposition 4.7).
∞∑m,n=0(−23)3m(43)3nm!n!(n+3)!(23)m+n(43)m=2√3π9. |
Double series expansions for 1/π and π with several free parameters are established and many interesting formulas are obtained. A point that should be stressed is that there is an important connection between the summation formulas for double hypergeometric functions and double series expansions for the powers of π.
The author was partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant 19KJB110006).
The author declares that there is no conflict of interest in this paper.
[1] |
V. Apostolov, P. Gauduchon, G. Grantcharov, Bihermitian structures on complex surfaces, Proceedings of The London Mathematical Society, 79 (1999), 414–428. https://doi.org/10.1112/S0024611599012058 doi: 10.1112/S0024611599012058
![]() |
[2] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics. Dover Publications, 2012. |
[3] | F. Bischoff, M. Gualtieri, M. Zabzine, Morita equivalence and the generalized Kähler potential, 2018, arXiv: 1804.05412. |
[4] | F. Bischoff, Morita equivalence and generalized Kähler geometry, University of Toronto Ph.D thesis, 2019. Available from: https://tspace.library.utoronto.ca/handle/1807/97318 |
[5] |
H. Bursztyn, O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Annales de l'Institut Fourier, 53 (2003), 309–337. https://doi.org/10.5802/aif.1945 doi: 10.5802/aif.1945
![]() |
[6] |
T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France, 116 (1988), 315–339. https://doi.org/10.24033/bsmf.2100 doi: 10.24033/bsmf.2100
![]() |
[7] | P. Du Val, Elliptic Functions and Elliptic Curves, London Mathematical Society Lecture Note Series. Cambridge University Press, 1973. |
[8] | W. Fulton, Introduction to toric varieties, Annals of mathematics studies. Princeton Univ. Press, Princeton, NJ, 1993. |
[9] | P. Gauduchon, Hermitian connections and Dirac operators, Bol. U. M. I., XI-B (1997), 257–289. |
[10] |
M. Gualtieri, Generalized Kähler geometry, Comm. Math. Phys., 331 (2014), 297–331. https://doi.org/10.1007/s00220-014-1926-z doi: 10.1007/s00220-014-1926-z
![]() |
[11] |
V. Guillemin, Kähler structures on toric varieties, J. Differential Geom., 40 (1994), 285–309. https://doi.org/10.4310/jdg/1214455538 doi: 10.4310/jdg/1214455538
![]() |
[12] |
N. Hitchin, Generalized Calabi–Yau Manifolds, Q. J. Math., 54 (2003), 281–308. https://doi.org/10.1093/qmath/hag025 doi: 10.1093/qmath/hag025
![]() |
[13] |
N. Hitchin, Bihermitian metrics on del pezzo surfaces, J. Symplectic Geom., 5 (2007), 1–8. https://dx.doi.org/10.4310/JSG.2007.v5.n1.a2 doi: 10.4310/JSG.2007.v5.n1.a2
![]() |
[14] |
C. M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B, 178 (1986), 357–364. https://doi.org/10.1016/0370-2693(86)91393-6 doi: 10.1016/0370-2693(86)91393-6
![]() |
[15] |
S. J. Gates, C. M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear sigma models, Nucl. Phys. B, 248 (1984), 157–186. https://doi.org/10.1016/0550-3213(84)90592-3 doi: 10.1016/0550-3213(84)90592-3
![]() |
[16] |
E. Lerman, Symplectic Cuts, Math. Res. Lett., 2 (1995), 247–258. https://dx.doi.org/10.4310/MRL.1995.v2.n3.a2 doi: 10.4310/MRL.1995.v2.n3.a2
![]() |
[17] | S. Li, D. Rupel, Symplectic groupoids for cluster manifolds, 2018, arXiv: 1807.03450. |
[18] |
U. Lindstrom, M. Rocek, R. von Unge, M. Zabzine, Generalized Kahler manifolds and off-shell supersymmetry, Comm. Math. Phys., 269 (2007), 833–849. https://doi.org/10.1007/s00220-006-0149-3 doi: 10.1007/s00220-006-0149-3
![]() |
[19] |
S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys., 110 (1987), 191–213. https://doi.org/10.1007/BF01207363 doi: 10.1007/BF01207363
![]() |
[20] |
A. Strominger, Superstrings with torsion, Nucl. Phys. B, 274 (1986), 253–284. https://doi.org/10.1016/0550-3213(86)90286-5 doi: 10.1016/0550-3213(86)90286-5
![]() |
[21] |
N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in n = 2 supersymmetric yang-mills theory, Nucl. Phys. B, 426 (1994), 19–52. https://doi.org/10.1016/0550-3213(94)90124-4 doi: 10.1016/0550-3213(94)90124-4
![]() |
[22] |
A. Strominger, S. T. Yau, E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B, 479 (1996), 243–259. https://doi.org/10.1016/0550-3213(96)00434-8 doi: 10.1016/0550-3213(96)00434-8
![]() |
[23] |
A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1987), 101–104. https://doi.org/10.1090/S0273-0979-1987-15473-5 doi: 10.1090/S0273-0979-1987-15473-5
![]() |
[24] |
P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys., 142 (1991) 493–509. https://doi.org/10.1007/BF02099098 doi: 10.1007/BF02099098
![]() |
[25] |
P. Xu, Poisson Manifolds Associated with Group Actions and Classical Triangular r-Matrices, J. Funct. Anal., 112 (1993), 218–240. https://doi.org/10.1006/jfan.1993.1031 doi: 10.1006/jfan.1993.1031
![]() |
[26] |
B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B, 87 (1979), 203–206. https://doi.org/10.1016/0370-2693(79)90964-X doi: 10.1016/0370-2693(79)90964-X
![]() |