In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form:
$ \begin{equation*} \left\{ \begin{array}{lll} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u &\mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} &\mbox{in}\ \Omega, \\ u = \phi = 0 &\mbox{on}\ \partial\Omega, \end{array} \right. \end{equation*} $
where $ a, b $ are positive real numbers, $ \Omega\subset \mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \mathbb{H}^N $, $ Q^{\ast} = \frac{pQ}{Q-p} $, $ q\in(2p, Q^{\ast}) $ and $ \Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \mu $ and $ \lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
Citation: Shujie Bai, Yueqiang Song, Dušan D. Repovš. On $ p $-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group[J]. Electronic Research Archive, 2023, 31(9): 5749-5765. doi: 10.3934/era.2023292
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form:
$ \begin{equation*} \left\{ \begin{array}{lll} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u &\mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} &\mbox{in}\ \Omega, \\ u = \phi = 0 &\mbox{on}\ \partial\Omega, \end{array} \right. \end{equation*} $
where $ a, b $ are positive real numbers, $ \Omega\subset \mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \mathbb{H}^N $, $ Q^{\ast} = \frac{pQ}{Q-p} $, $ q\in(2p, Q^{\ast}) $ and $ \Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \mu $ and $ \lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
[1] | J. Tyagi, Nontrivial solutions for singular semilinear elliptic equations on the Heisenberg group, Adv. Nonlinear Anal., 3 (2014), 87–94. https://doi.org/10.1515/anona-2013-0027 doi: 10.1515/anona-2013-0027 |
[2] | D. Goel, K. Sreenadh, Existence and nonexistence results for Kohn Laplacian with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 486 (2020), 123915. https://doi.org/10.1016/j.jmaa.2020.123915 doi: 10.1016/j.jmaa.2020.123915 |
[3] | X. Sun, Y. Song, S. Liang, On the critical Choquard-Kirchhoff problem on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 210–236. https://doi.org/10.1515/anona-2022-0270 doi: 10.1515/anona-2022-0270 |
[4] | J. Zhou, L. Guo, B. Zhang, Kirchhoff-type problems involving the fractional $p$-Laplacian on the Heisenberg group, Rend. Circ. Mat. Palermo Ser. 2, 71 (2022), 1133–1157. https://doi.org/10.1007/s12215-022-00763-6 doi: 10.1007/s12215-022-00763-6 |
[5] | S. Deng, X. Tian, Existence of solutions for Kirchhoff type systems involving $Q$-Laplacian operator in Heisenberg group, J. Math. Anal. Appl., 495 (2021), 124727. https://doi.org/10.1016/j.jmaa.2020.124727 doi: 10.1016/j.jmaa.2020.124727 |
[6] | A. K. Ben-Naouma, C. Troestler, M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal. Theory Methods Appl., 26 (1996), 823–833. https://doi.org/10.1016/0362-546X(94)00324-B doi: 10.1016/0362-546X(94)00324-B |
[7] | S. Bordoni, P. Pucci, Schrödinger-Hardy systems involving two Laplacian operators in the Heisenberg group, Bull. Sci. Math., 146 (2018), 50–88. https://doi.org/10.1016/j.bulsci.2018.03.001 doi: 10.1016/j.bulsci.2018.03.001 |
[8] | Z. Liu, L. Tao, D. Zhang, S. Liang, Y. Song, Critical nonlocal Schrödinger-Poisson system on the Heisenberg group, Adv. Nonlinear Anal., 11 (2022), 482–502. https://doi.org/10.1515/anona-2021-0203 doi: 10.1515/anona-2021-0203 |
[9] | P. Pucci, Existence and multiplicity results for quasilinear elliptic equations in the Heisenberg group, Opuscula Math., 39 (2019), 247–257. https://doi.org/10.7494/OpMath.2019.39.2.247 doi: 10.7494/OpMath.2019.39.2.247 |
[10] | P. Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst. - Ser. S, 12 (2019), 375–400. https://doi.org/10.3934/dcdss.2019025 doi: 10.3934/dcdss.2019025 |
[11] | P. Pucci, L. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opuscula Math., 40 (2020), 151–163. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151 |
[12] | P. Pucci, L. Temperini, Existence for $(p, q)$ critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9 (2020), 895–922. https://doi.org/10.1515/anona-2020-0032 doi: 10.1515/anona-2020-0032 |
[13] | P. Pucci, Y. Ye, Existence of nontrivial solutions for critical Kirchhoff-Poisson systems in the Heisenberg group, Adv. Nonlinear Stud., 22 (2022), 361–371. https://doi.org/10.1515/ans-2022-0018 doi: 10.1515/ans-2022-0018 |
[14] | Y. C. An, H. Liu, The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group, Isr. J. Math., 235 (2020), 385–411. https://doi.org/10.1007/s11856-020-1961-8 doi: 10.1007/s11856-020-1961-8 |
[15] | S. Liang, P. Pucci, Multiple solutions for critical Kirchhoff-Poisson systems in the Heisenberg group, Appl. Math. Lett., 127 (2022), 107846. https://doi.org/10.1016/j.aml.2021.107846 doi: 10.1016/j.aml.2021.107846 |
[16] | Y. Du, J. Su, C. Wang, The Schrödinger-Poisson system with $p$-Laplacian, Appl. Math. Lett., 120 (2021), 107286. https://doi.org/10.1016/j.aml.2021.107286 doi: 10.1016/j.aml.2021.107286 |
[17] | Y. Du, J. Su, C. Wang, On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 505 (2022), 125446. https://doi.org/10.1016/j.jmaa.2021.125446 doi: 10.1016/j.jmaa.2021.125446 |
[18] | Y. Du, J. Su, C. Wang, On the critical Schrödinger-Poisson system with $p$-Laplacian, Commun. Pure Appl. Anal., 21 (2022), 1329–1342. http://dx.doi.org/10.3934/cpaa.2022020 doi: 10.3934/cpaa.2022020 |
[19] | G. P. Leonardi, S. Masnou, On the isoperimetric problem in the Heisenberg group $H^{N}$, Ann. Mat. Pura Appl., 184 (2005), 533–553. https://doi.org/10.1007/s10231-004-0127-3 doi: 10.1007/s10231-004-0127-3 |
[20] | N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215 |
[21] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Nonlinear Analysis – Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6 |
[22] | G. B. Folland, E. M. Stein, Estimates for the $\overline{\partial}b$ complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27 (1974), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403 |
[23] | D. Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pac. J. Math., 227 (2006), 361–397. http://dx.doi.org/10.2140/pjm.2006.227.361 doi: 10.2140/pjm.2006.227.361 |
[24] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in CBME Regional Conference Series in Mathematics, 65 (1986). https://doi.org/10.1090/cbms/065 |
[25] | Z. Wei, X. Wu, A multiplicity result for quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Anal. Theory Methods Appl., 18 (1992), 559–567. https://doi.org/10.1016/0362-546X(92)90210-6 doi: 10.1016/0362-546X(92)90210-6 |
[26] | A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |