Research article

Normalized solutions for nonlinear Kirchhoff type equations in high dimensions

  • Received: 18 November 2021 Revised: 15 February 2022 Accepted: 02 March 2022 Published: 16 March 2022
  • We study the normalized solutions for nonlinear Kirchhoff equation with Sobolev critical exponent in high dimensions $ \mathbb{R}^N(N\geqslant4) $. In particular, in dimension $ N = 4 $, there is a special phenomenon for Kirchhoff equation that the mass critical exponent $ 2+\frac{8}{N} $ is equal to the energy critical exponent $ \frac{2N}{N-2} $, which leads to the fact that the equation no longer has a variational structure in dimensions $ N\geqslant 4 $ if we consider the mass supercritical case, and remains unsolved in the existing literature. In this paper, by using appropriate transform, we first get the equivalent system of Kirchhoff equation. With the equivalence result, we obtain the nonexistence, existence and multiplicity of normalized solutions by variational methods, Cardano's formulas and Pohožaev identity.

    Citation: Lingzheng Kong, Haibo Chen. Normalized solutions for nonlinear Kirchhoff type equations in high dimensions[J]. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067

    Related Papers:

  • We study the normalized solutions for nonlinear Kirchhoff equation with Sobolev critical exponent in high dimensions $ \mathbb{R}^N(N\geqslant4) $. In particular, in dimension $ N = 4 $, there is a special phenomenon for Kirchhoff equation that the mass critical exponent $ 2+\frac{8}{N} $ is equal to the energy critical exponent $ \frac{2N}{N-2} $, which leads to the fact that the equation no longer has a variational structure in dimensions $ N\geqslant 4 $ if we consider the mass supercritical case, and remains unsolved in the existing literature. In this paper, by using appropriate transform, we first get the equivalent system of Kirchhoff equation. With the equivalence result, we obtain the nonexistence, existence and multiplicity of normalized solutions by variational methods, Cardano's formulas and Pohožaev identity.



    加载中


    [1] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
    [2] J. Sun, T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differ. Equ., 256 (2014), 1771–1792. https://doi.org/10.1016/j.jde.2013.12.006 doi: 10.1016/j.jde.2013.12.006
    [3] J. Lions, On some questions in boundary value problems of mathematical physics, North-Holl. Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [4] Z. Liu, M. Squassina, J. Zhang, Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension, NoDEA Nonlinear Differ. Equ. Appl., 24 (2017), 50. https://doi.org/10.1007/s00030-017-0473-7 doi: 10.1007/s00030-017-0473-7
    [5] X. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384–2402. https://doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032
    [6] X. Tang, S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56 (2017), 110. https://doi.org/10.1007/s00526-017-1214-9 doi: 10.1007/s00526-017-1214-9
    [7] F. Zhou, M. Yang, Solutions for a Kirchhoff type problem with critical exponent in $\mathbb{R}^N$, J. Math. Anal. Appl., 494 (2021), 124638. https://doi.org/10.1016/j.jmaa.2020.124638 doi: 10.1016/j.jmaa.2020.124638
    [8] T. Cazenave, P. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/bf01403504 doi: 10.1007/bf01403504
    [9] M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscr. Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9
    [10] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0
    [11] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
    [12] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [13] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
    [14] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
    [15] T. Hu, C. Tang, Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations, Calc. Var. Partial Differ. Equ., 60 (2021), 210. https://doi.org/10.1007/s00526-021-02018-1 doi: 10.1007/s00526-021-02018-1
    [16] G. Li, H. Ye, On the concentration phenomenon of $L^2$-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differ. Equ., 266 (2019), 7101–7123. https://doi.org/10.1016/j.jde.2018.11.024 doi: 10.1016/j.jde.2018.11.024
    [17] G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with sobolev critical exponent, arXiv preprint, arXiv: 2103.08106.
    [18] W. Xie, H. Chen, Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems, Comput. Math. Appl., 76 (2018), 579–591. https://doi.org/10.1016/j.camwa.2018.04.038 doi: 10.1016/j.camwa.2018.04.038
    [19] H. Ye, The mass concentration phenomenon for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 67 (2016), 1–16. https://doi.org/10.1007/s00033-016-0624-4 doi: 10.1007/s00033-016-0624-4
    [20] B. Abdellaoui, V. Felli, I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\mathbb{R}^N$, Calc. Var. Partial Differ. Equ., 34 (2009), 97–137. https://doi.org/10.1007/s00526-008-0177-2 doi: 10.1007/s00526-008-0177-2
    [21] Z. Chen, W, Zou, A remark on doubly critical elliptic systems, Calc. Var. Partial Differ. Equ., 50 (2014), 939–965. https://doi.org/10.1007/s00526-013-0662-0 doi: 10.1007/s00526-013-0662-0
    [22] M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265
    [23] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013
    [24] N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14 (2014), 115–136. https://doi.org/10.1515/ans-2014-0104 doi: 10.1515/ans-2014-0104
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1708) PDF downloads(142) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog