Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation


  • In this paper, a fully discrete local discontinuous Galerkin finite element method is proposed to solve the KdV-Burgers-Kuramoto equation with variable-order Riemann-Liouville time fractional derivative. The method proposed in this paper is based on the finite difference method in time and local discontinuous Galerkin method in space. For all ϵ(t)(0,1) with variable order, we prove the scheme is unconditional stable and convergent. Finally, numerical examples are provided to verify the theoretical analysis and the order of convergence for the proposed method.

    Citation: Leilei Wei, Xiaojing Wei, Bo Tang. Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation[J]. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066

    Related Papers:

    [1] Akeel A. AL-saedi, Jalil Rashidinia . Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216
    [2] Lijie Liu, Xiaojing Wei, Leilei Wei . A fully discrete local discontinuous Galerkin method based on generalized numerical fluxes to variable-order time-fractional reaction-diffusion problem with the Caputo fractional derivative. Electronic Research Archive, 2023, 31(9): 5701-5715. doi: 10.3934/era.2023289
    [3] Yunxia Niu, Chaoran Qi, Yao Zhang, Wahidullah Niazi . Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation. Electronic Research Archive, 2025, 33(3): 1763-1791. doi: 10.3934/era.2025080
    [4] Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045
    [5] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [6] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [7] Min Li . Long-wavelength limit for the Green–Naghdi equations. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138
    [8] Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour . Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order. Electronic Research Archive, 2024, 32(1): 134-159. doi: 10.3934/era.2024007
    [9] Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120
    [10] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
  • In this paper, a fully discrete local discontinuous Galerkin finite element method is proposed to solve the KdV-Burgers-Kuramoto equation with variable-order Riemann-Liouville time fractional derivative. The method proposed in this paper is based on the finite difference method in time and local discontinuous Galerkin method in space. For all ϵ(t)(0,1) with variable order, we prove the scheme is unconditional stable and convergent. Finally, numerical examples are provided to verify the theoretical analysis and the order of convergence for the proposed method.



    Fractional calculus is the development and extension of integral calculus, and its practical significance has attracted wide attention of many scholars [1,2,3]. Its theoretical research has been well applied not only in the field of pure mathematical theory, but also in various fields such as rheology and mechanical systems, optical and thermal systems, signal and image processing, industrial production and technology, electromagnetism, physics and materials [4,5,6,7,8,9]. In recent years, variable order fractional calculus has been discovered in some physical processes, such as algebraic structure and noise reduction. It is a generalization of the concepts of constant order fractional differential and fractional differential theory [10,11,12,13,14,15,16,17,18].

    KdV-Burgers-Kuramoto equation is a partial differential equation in nonlinear mathematical physics equation. The equation includes unsteady term, nonlinear term, dissipation term, dispersion term and instability term [19]. KdV class equations are the classical equations of nonlinear wave theory and soliton phenomenon. It is first obtained from the shallow water wave equation, and appears in plasma acoustic waves, longitudinal dispersion waves in elastic rods, etc., which can well explain many important physical phenomena. It can be used to describe the movement of unstable systems such as turbulence in some physical processes, unstable floating waves in plasma, stress waves in broken porous media, and nonlinear surface long waves of viscous fluids flowing downward on inclined surfaces [20,21]. Some papers have studied nonlinear or linear differential equations using local discontinuous Galerkin or other methods [22,23,24,25,26,27], while others have studied fourth-order differential equations [28,29,30,31,32]. In recent years, many scholars have studied various applications and properties of KdV-Burgers-Kuramoto equation and different numerical methods. Secer and Ozdemir proposed the wavelet Galerkin method to solve the time fractional order KdV-Burgers-Kuramoto equation, which was transformed into its corresponding nonlinear algebraic equation, and the numerical solution was obtained by Newton method [33]. Bruzón et al. introduced the generalized KdV-Burgers-Kuramoto equation, and studied the conservation law and classical symmetry with multiplier method [34]. Kim and Chun found the exact solution of the equation based on empirical function method, and constructed a new generalized solitary wave solution of KdV-Burgers-Kuramoto equation by using truncated Painleve expansion method and Exp function method [35]. Kaya et al. linearized the nonlinear term of the equation by linearization technique, and obtained its numerical solution by finite difference method [36].

    In this paper, we will design a high-order local discontinuous Galerkin method to simulate the fractional KdV-Burgers-Kuramoto equation with variable-order time derivatives, and discuss its stability and the optimal convergence rate. Discontinuous Galerkin (DG) method not only uses the element polynomial space of general finite element method as the approximate solution and test function space, but also allows the basis function to adopt completely discontinuous piecewise polynomial, and has the advantage of both finite element method and finite volume method [37,38]. DG plays an important role in volume dynamics, shallow water simulation, magnetohydrodynamics, oceanography, viscoelastic flow, oil recovery simulation, semiconductor device simulation and so on [39,40,41,42].

    We consider the following variable-order time fractional KdV-Burgers-Kuramoto equation

    R0D1ϵ(t)tu+L(u)xθ1uxx+θ2uxxx+θ3uxxxx=F(x,t),(x,t)(a,b)×(0,T],u(x,0)=u0(x),x[a,b], (1.1)

    in which 0<ϵ(t)<1, θ1, θ2, θ3 are constants and θ1,θ30. The L(u) is an arbitrary nonlinear function and F,u0 are smooth functions. In this paper, the solution is considered to be periodic or compactly supported.

    The variable-order Riemann-Liouville fractional derivative in Eq (1.1) is defined by

    R0D1ϵ(t)tμ(x,t)=(1Γ(ϵ(t))ddζζ0μ(x,ξ)(ζξ)1ϵ(t)dξ)ζ=t.

    In Section 2, some symbols, basic projections and the numerical flux are given. In Section 3, we will propose a fully discrete local discontinuous Galerkin method for the Eq (1.1), and prove that the scheme is unconditional stable and convergent. Numerical examples are given to show the reliability and effectiveness of the method in Section 4. Finally, the conclusion is given in Section 5.

    Let a=x12<x32<<xN+12=b be partition of Ω=[a,b], denote Ij=[xj12,xj+12], for j=1,N, and hj=xj+12xj12,1jN, h=max1jNhj.

    We denote u+j+12=limt0+u(xj+12+t) and uj+12=limt0+u(xj+12t).

    Let [unh]j+12 is used to denote (unh)+j+12(unh)j+12, the jump of unh at each element boundary point.

    The piecewise-polynomial space Vkh is defined as

    Vkh={ϑ:ϑPk(Ij),xIj,j=1,2,N},

    where k is order of piecewise polynomial.

    The fractional derivative of Riemann-Liouville and Caputo are introduced below, which are related to each other [43,44].

    Lemma 2.1. Let Wmp(a,b) be the Banach spaces with their weak derivatives of order m in Lp(a,b), and the function μ(x,t)W11(0,T), then we have

    R0D1ϵ(t)tμ(x,t)=C0D1ϵ(t)tμ(x,t)+μ(x,0)tϵ(t)1Γ(ϵ(t)),

    where C0D1ϵ(t)tμ(x,t) is the variable-order Caputo fractional derivative

    C0D1ϵ(t)tμ(x,t)=1Γ(ϵ(t))t0μ(x,η)ηdη(tη)1ϵ(t).

    For any periodic function ϖ, the following are two basic projections that will be used in error analysis, that is P,

    Ij(Pϖ(x)ϖ(x))ϑ(x)=0,ϑPk(Ij), (2.1)

    and projection P±,

    Ij(P+ϖ(x)ϖ(x))ϑ(x)=0,ϑPk1(Ij),P+ϖ(x+j12)=ϖ(xj12), (2.2)

    and

    Ij(Pϖ(x)ϖ(x))ϑ(x)=0,ϑPk1(Ij),Pϖ(xj+12)=ϖ(xj+12). (2.3)

    The projections P and P± satisfy[45,46,47]

    v+hv+h12vτhChmin(k+1,r+1)ϖr+1, (2.4)

    where v=Pϖϖ or v=P±ϖϖ. The positive constant C, solely depending on ϖ, is independent of h. τh represents the union of all element boundary points, and the L2-norm on τh is defined by

    vτh=(1jN((v+j+12)2+(vj+12)2))12.

    Numerical flux ˆL(ψ,ψ+) is considered in this paper. It is monotone, which depends on the two values of the function ψ at the discontinuity point xj+12. Many examples of monotonic flux can be found in reference [48].

    In the paper, C is a positive number that may have different values in different places. Let the scalar inner product on L2(E) be denoted by (,)E, and the associated norm by E. If E=Ω, we drop E.

    We first describe the fully discrete local discontinuous Galerkin method for the Eq (1.1). By means of Lemma 2.1, we can rewrite the model Eq (1.1) into the following form

    β=ux,γ=βx,ι=θ1u+θ2β+θ3γ,g=ιx,C0D1ϵ(t)tu+L(u)x+gx=u0(x)tϵ(t)1Γ(ϵ(t))+F(x,t). (3.1)

    Let tn=nΔt=nMT, Δt=tntn1. We estimate the time derivative C0D1ϵ(t)tu at tn as follows

    C0D1ϵ(t)tu(x,tn)=1Γ(ϵ(tn))tn0u(x,δ)δ(tnδ)ϵ(t)1dδ=1Γ(ϵ(tn))n1i=0ti+1tiu(x,δ)δ(tnδ)ϵ(t)1dδ=1Γ(ϵ(tn))n1i=0ti+1tiu(x,ti+1)u(x,ti)Δt(tnδ)ϵ(t)1dδ+rn(x)=1Γ(ϵ(tn))n1i=0u(x,ti+1)u(x,ti)Δt(1ϵ(tn))((tnti+1)ϵ(tn)(tnti)ϵ(tn))+rn(x)=Δtϵ(tn)1Γ(1+ϵ(tn))ni=1ωnni(u(x,ti)u(x,ti1))+rn(x), (3.2)

    where ωni=(i+1)ϵ(tn)iϵ(tn). The truncation error is

    rn(x)C1(Δt)1+ϵ(tn). (3.3)

    Further, we have the following results:

    C0D1ϵ(t)tu(x,tn)=Δtϵ(tn)1Γ(1+ϵ(tn))(u(x,tn)+ni=1(ωnniωnni1)u(x,ti)ωnn1u(x,t0))+rn(x), (3.4)

    where ωni has the following properties

    1=ωn0>ωn1>ωn2>>ωnn>0,nk=1(ωnk1ωnk)+ωnn=1,ϵ(tn)(k+1)ϵ(tn)1ωnkϵ(tn)kϵ(tn)1. (3.5)

    Let unh,gnh,ιnh,γnh,βnhVkh be the approximations of u(,tn),g(,tn),ι(,tn),γ(,tn),β(,tn), respectively, Fn(x)=F(x,tn). Find unh,gnh,ιnh,γnh,βnhVkh, such that for all test functions ϱ,σ,ς,κ,χVkh,

    Δtϵ(tn)1Γ(1+ϵ(tn))Ωunhϱdx(Ω(L(unh)ϱx)dxNj=1((^Lnhϱ)j+12(^Lnhϱ+)j12))(ΩgnhϱxdxNj=1((^gnhϱ)j+12(^gnhϱ+)j12))=Δtϵ(tn)1Γ(1+ϵ(tn))(n1i=1(ωnni1ωnni)Ωuihϱdx+ωnn1Ωu0hϱdx)tϵ(tn)1nΓ(ϵ(tn))Ωu0hϱdx+ΩFnϱdx,Ωgnhσdx+ΩιnhσxdxNj=1((^ιnhσ)j+12(^ιnhσ+)j12)=0,ΩιnhςdxΩ(θ1unh+θ2βnh+θ3γnh)ςdx=0,Ωγnhκdx+ΩβnhκxdxNj=1((^βnhκ)j+12(^βnhκ+)j12)=0,Ωβnhχdx+ΩunhχxdxNj=1((^unhχ)j+12(^unhχ+)j12)=0. (3.6)

    For the sake of convenience, we take λ=Γ(1+ϵ(tn))Δtϵ(tn)1. The choice of the hat term (3.6) will have an important influence on the stability. We consider the following numerical flux

    ifθ2>0,~βnh=(βnh),^βnh=~βnh+τ[ιnh+θ1unhθ2βnh],^unh=(unh)+,^gnh=(gnh),^ιnh=(ιnh)+. (3.7)
    ifθ2<0,~βnh=(βnh)+,^βnh=~βnh+τ[ιnh+θ1unh+|θ2|βnh],^unh=(unh),^gnh=(gnh)+,^ιnh=(ιnh). (3.8)

    where τ>0.

    We use iterative method to calculate it because of the nonlinear.

    Find un,mh,gn,mh,ιn,mh,γn,mh,βn,mhVkh, such that for all test functions ϱ,σ,ς,κ,χVkh, we can get

    Δtϵ(tn)1Γ(1+ϵ(tn))Ωun,mhϱdx(Ωgn,mhϱxdxNj=1((^gn,mhϱ)j+12(^gn,mhϱ+)j12))=Δtϵ(tn)1Γ(1+ϵ(tn))(n1i=1(ωnni1ωnni)Ωuihϱdx+ωnn1Ωu0hϱdx)tϵ(tn)1nΓ(ϵ(tn))Ωu0hϱdx+ΩFnϱdx+(Ω(L(un,f1h)ϱx)dxNj=1((^Ln,f1hϱ)j+12(^Ln,f1hϱ+)j12)),Ωgn,mhσdx+Ωιn,mhσxdxNj=1((^ιn,mhσ)j+12(^ιn,mhσ+)j12)=0,Ωιn,mhςdxΩ(θ1un,mh+θ2βn,mh+θ3γn,mh)ςdx=0,Ωγn,mhκdx+Ωβn,mhκxdxNj=1((^βn,mhκ)j+12(^βn,mhκ+)j12)=0,Ωβn,mhχdx+Ωun,mhχxdxNj=1((^un,mhχ)j+12(^un,mhχ+)j12)=0. (3.9)

    Where m is the iteration step. un,0h=un1h is initial condition, un,mhun,m1h106 is stop condition.

    Next, we give the stability analysis of the numerical scheme (3.6).

    Without losing generality, we consider the case of F=0 and (3.8) in the numerical analysis of this model problem. The following stability result for the scheme (3.6) is obtained.

    Theorem 3.1. For periodic or compactly supported boundary conditions, the fully-discrete LDG scheme (3.6) is unconditionallystable, and the numerical solution unh satisfies

    unh2+2λθ1βnh2+2λθ3γnh2+λ|θ2|Nj=1[βnh]2j12+2λτNj=1[ιnh+θ1unh+|θ2|βnh]2j12u0h2,n=1,2,M. (3.10)

    Proof. Taking the test functions ϱ=unh,χ=λgnh+λθ1βnh,σ=λβnh,χ=λ(ιnh+θ1unh+|θ2|βnh),ς=λγnh in scheme (3.6), and with the fluxes choice (3.7), we obtain

    unh2+λθ1βnh2+λθ3γnh2+λ˜L(unh)+λτNj=1[ιnh+θ1unh+|θ2|βnh]2j12+Nj=1λ(Φ(unh,gnh,βnh,ιnh)j+12Φ(unh,gnh,βnh,ιnh)j12+Λ(unh,gnh;βnh,ιnh)j12)=n1i=1(ωnni1ωnni)Ωuihunhdx+(ωnn1ϵ(tn)nϵ(tn)1)Ωu0hunhdx. (3.11)

    In each cell Ij=[xj12,xj+12], we obtain

    ˜L(unh)=(Ω(L(unh)ϱx)dxNj=1((^Lnhϱ)j+12(^Lnhϱ+)j12)),Φ(unh,gnh,βnh,ιnh)=(gnh)(unh)+^gnh(unh)+^unh(gnh)+(βnh)(ιnh)~βnh(ιnh)^ιnh(βnh)+θ1((βnh)(unh)~βnh(unh)^unh(βnh))+|θ2|(12((βnh))2~βnh(βnh)),Λ(unh,gnh,βnh,ιnh)=(gnh)(unh)+(gnh)+(unh)++^gnh(unh)^gnh(unh)++^unh(gnh)^unh(gnh)++(βnh)(ιnh)(βnh)+(ιnh)+~βnh(ιnh)+~βnh(ιnh)+^ιnh(βnh)+^ιnh(βnh)++θ1((βnh)(unh)(βnh)+(unh)+~βnh(unh)+~βnh(unh)+^unh(βnh)+^unh(βnh)+)+|θ2|(12((βnh))212((βnh)+)2~βnh(βnh)+~βnh(βnh)+). (3.12)

    After some calculation, and sum (3.12) from 1 to N over j, we can easily get

    Λ(unh,gnh,βnh,ιnh)=|θ2|2[βnh]2. (3.13)

    Let ˙L(u)=u0L(u)du. Considering the nonlinear term, we can use a mean value theorem to calculate, so that we can get

    ˜L(unh)=Nj=1(˙L(ξ)ˆL)[unh]j120,

    where ξ is a value between (unh) and (unh)+. We consider the monotonicity of flux function, and obtain inequality. Combine (3.5) and (3.13), the equality (3.11) becomes

    unh2+λθ1βnh2+λθ3γnh2+λ|θ2|2Nj=1[βnh]2j12+λτNj=1[ιnh+θ1unh+|θ2|βnh]2j12n1i=1(ωnni1ωnni)Ωuihunhdx+ωnn1unhu0h. (3.14)

    The Theorem 3.1 will be proved by mathematical induction. Let n=1 in (3.14), and based on the following formula:

    Ωu0hunhdx12unh2+12u0h2.

    We can obtain

    u1h2+λθ1β1h2+λθ3γ1h2+λ|θ2|2Nj=1[β1h]2j12+λτNj=1[ι1h+θ1u1h+|θ2|β1h]2j12ωn0u1hu0h12u1h2+12u0h2, (3.15)

    then we can get the following inequalities immediately

    u1h2+2λθ1β1h2+2λθ3γ1h2+λ|θ2|Nj=1[β1h]2j12+2λτNj=1[ι1h+θ1u1h+|θ2|β1h]2j12u0h2, (3.16)

    and

    u1hu0h. (3.17)

    Now we assume that the following inequality holds

    unhu0h,n=1,2,3,p, (3.18)

    we need to prove

    up+1hu0h.

    It follows from (3.14) that

    up+1h2+λθ1βp+1h2+λθ3γp+1h2+λ|θ2|2Nj=1[βp+1h]2j12+λτNj=1[ιp+1h+θ1up+1h+|θ2|βp+1h]2j12pi=1(ωnpiωnp+1i)uihup+1h+ωnpup+1hu0h(pi=1(ωnpiωnp+1i)+ωnp)up+1hu0h. (3.19)

    Consequently, we have

    up+1h2+2λθ1βp+1h2+2λθ3γp+1h2+λ|θ2|Nj=1[βp+1h]2j12+2λτNj=1[ιp+1h+θ1up+1h+|θ2|βp+1h]2j12u0h2.

    Consider the linear case L(u)=u and choose (3.8) as the numerical flux in error estimate. We have the following theorem.

    Theorem 3.2. Let u(x,tn) be the exact solution of theproblem (1.1), which is sufficiently smooth with boundedderivatives. Let unh be the numerical solution of the fullydiscrete LDG scheme (3.6), then there holds the followingerror estimates when 0<ϵ(tn)ˉϵ<1

    u(x,tn)unhCTˉϵ1ˉϵ((Δt)ˉϵhk+1+(Δt)2ˉϵ+(Δt)13ˉϵ2hk+12+hk+1)

    and when ϵ(tn)ˉϵ1,

    u(x,tn)unhTC((Δt)1hk+1+Δt+(Δt)1hk+12+hk+1).

    Proof.

    enu=u(x,tn)unh=ξnuηnu,ξnu=Penu,ηnu=Pu(x,tn)u(x,tn),eng=g(x,tn)gnh=ξngηng,ξng=P+eng,ηng=P+g(x,tn)g(x,tn),enι=ι(x,tn)ιnh=ξnιηnι,ξnι=Penι,ηnι=Pι(x,tn)ι(x,tn),enγ=γ(x,tn)γnh=ξnγηnγ,ξnγ=Penγ,ηnγ=Pγ(x,tn)γ(x,tn),enβ=β(x,tn)βnh=ξnβηnβ,ξnβ=Penβ,ηnβ=Pβ(x,tn)β(x,tn). (3.20)

    Here ηnu, ηng, ηnι, ηnγ, and ηnβ have been estimated by the inequality (Eq 2.4).

    Taking the flux (3.7), we can get the following error equation

    Ωenuϱdxλ(Ω(enuϱx)dxNj=1((^enuϱ)j+12(^enuϱ+)j12))λ(ΩengϱxdxNj=1((^engϱ)j+12(^engϱ+)j12))n1i=1(ωnni1ωnni)Ωeiuϱdxωnn1Ωe0uϱdx+ϵ(tn)nϵ(tn)1Ωe0uϱdx+λΩrn(x)ϱdx+Ωengσdx+ΩenισxdxNj=1((^enισ)j+12(^enισ+)j12)+ΩenιςdxΩ(θ1enu+|θ2|enβ+θ3enγ)ςdx+Ωenγκdx+ΩenβκxdxNj=1(((~enβ+τ[enι+θ1enu+|θ2|enβ])κ)j+12((~enβ+τ[enι+θ1enu+|θ2|enβ])κ)j12)+Ωenβχdx+ΩenuχxdxNj=1((^enuχ)j+12(^enuχ+)j12)=0. (3.21)

    Take the test function ϱ=ξnu,χ=λξng+λθ1ξnβ,σ=λξnβ,κ=λ(ξnι+θ1ξnu+|θ2|ξnβ),ς=λξnγ, and use (3.20) in the error equation (3.21), we can get

    Ωξnuξnudxλ(Ωξnu(ξnu)xdxNj=1(((ξnu)(ξnu))j+12((ξnu)(ξnu)+)j12))λ(Ωξng(ξnu)xdxNj=1(((ξng)+(ξnu))j+12((ξng)+(ξnu)+)j12))+Ωξng(λξnβ)dx+Ωξnι(λξnβ)xdxNj=1(((ξnι)λ(ξnβ))j+12((ξnι)λ(ξnβ)+)j12)+Ωξnι(λξnγ)dxΩ(λξnγ)(θ1ξnu|θ2|ξnβ+θ3ξnγ)dx+Ωξnγ(λ(ξnι+θ1ξnu+|θ2|ξnβ))dx+Ωξnβ(λ(ξnι+θ1ξnu+|θ2|ξnβ))xdxNj=1(((ξnβ)+(λ(ξnι+θ1ξnu+|θ2|ξnβ)))j+12((ξnβ)+(λ(ξnι+θ1ξnu+|θ2|ξnβ))+)j12)+Ωξnβ(λ(ξng+θ1ξnβ))dx+Ωξnu(λ(ξng+θ1ξnβ))xdxNj=1(((ξnu)(λ(ξng+θ1ξnβ)))j+12((ξnu)(λ(ξng+θ1ξnβ))+)j12)+τNj=1[ξnι+θ1ξnu+|θ2|ξnβ][λ(ξnι+θ1ξnu+|θ2|ξnβ)]j12τNj=1[ηnι+θ1ηnu+|θ2|ηnβ][λ(ξnι+θ1ξnu+|θ2|ξnβ)]j12=n1i=1(ωnni1ωnni)Ωξiuξnudx+ωnn1Ωξ0uξnudxλΩrn(x)ξnudxϵ(tn)nϵ(tn)1Ωξ0uξnudx+Ωηnuξnudxλ(Ωηnu(ξnu)xdxNj=1(((ηnu)(ξnu))j+12((ηnu)(ξnu)+)j12))λ(Ωηng(ξnu)xdxNj=1(((ηng)+(ξnu))j+12((ηng)+(ξnu)+)j12))n1i=1(ωnni1ωnni)Ωηiuξnudx+ωnn1Ωη0uξnudx+ϵ(tn)nϵ(tn)1Ωη0uξnudx
    (3.22)

    From the stability result (3.13), and notice that , we could have the following equality

    (3.23)

    Noticing the fact that , using the Hold's inequality, we have

    (3.24)

    choosing a small enough , we have

    (3.25)

    The error estimation will be proved by mathematical induction. For the sake of convenience, we denote

    1) We assume that inequality holds

    (3.26)

    When , the Eq (3.25) becomes

    (3.27)

    it is easy to see that , we use the projection (2.4), the Eq (3.27) becomes

    (3.28)

    denoting , then we can obtain

    (3.29)

    When , from the Eq (3.25), we can get the following formula

    (3.30)

    from the fact that , we can obtain

    (3.31)

    that is

    The inequality (Eq 3.26) follows.

    By some calculations and analysis, we know that increasingly tends to . So we can obtain

    (3.32)

    let , we get

    2) The above estimate has no any meaning when due to . So we must reconsider it for the case . We suppose the following estimate holds

    (3.33)

    By the similar techniques used in 1), we can obtain (3.33) easily. Here we omitted the proof to save space. Then we know that when ,

    (3.34)

    Therefore, the Theorem (3.2) is proved by using triangle inequality and interpolation property (2.4).

    Consider the following Eq (1.1)

    with for . Let , and the function

    is chosen such that the exact solution of the equation is .

    The convergence results are obtained for both norm and norm of the error. For uniform meshes of size , numerical errors and convergence rates are shown in Table 1 for and , respectively. The approximate results illustrate that we can obtain the optimal convergence rate for piecewise polynomials.

    Table 1.  Spatial accuracy test using piecewise polynomials for different with .} {\rule{{1.0\textwidth}}{1.0pt}.
    -error order -error order
    5 9.685203621798523e-01 - 6.379956735215794e-01 -
    10 5.131699687064827e-01 0.91 3.434021021823682e-01 0.89
    15 3.543603097267153e-01 0.91 2.401097883239301e-01 0.88
    20 2.718283030769113e-01 0.92 1.850593375414192e-01 0.91
    5 4.274575676786749e-01 - 1.356345642784364e-01 -
    10 1.120815477222346e-01 1.93 3.602991578837320e-02 1.91
    15 5.080884855810062e-02 1.95 1.646473995390689e-02 1.93
    20 2.925834990380055e-02 1.92 9.481850124524746e-03 1.92
    5 5.145354345352343e-02 - 1.617195645938465e-02 -
    10 6.745595837790079e-03 2.93 2.146026127377610e-03 2.91
    15 2.064961919996569e-03 2.92 6.622073768997247e-04 2.90
    20 8.883345186203795e-04 2.93 2.881654245985029e-04 2.89
    5 9.325542354543543e-01 - 5.964363253453792e-01 -
    10 4.953337244608951e-01 0.91 3.218730635976069e-01 0.88
    15 3.449403321661977e-01 0.89 2.250564940530071e-01 0.89
    20 2.655460819343356e-01 0.91 1.732800763214672e-01 0.91
    5 3.735644351521624e-01 - 1.036235146245315e-01 -
    10 9.800607153283283e-02 1.93 2.737829090331864e-02 1.92
    15 4.472476489804463e-02 1.93 1.240513342522110e-02 1.95
    20 2.555711903450026e-02 1.94 7.071362495520857e-03 1.95
    5 5.313548613457315e-02 - 1.511535475315465e-02 -
    10 7.013467489730436e-03 2.92 1.980778635021947e-03 2.93
    15 2.189876231664590e-03 2.87 6.134799693484867e-04 2.89
    20 9.485624345109698e-04 2.91 2.647263397865280e-04 2.92

     | Show Table
    DownLoad: CSV

    In this paper, a fully discrete local discontinuous Galerkin finite element method for solving the nonlinear variable order KdV-Burgers-Kuramoto equation is presented, which based on the finite difference method and the local discontinuous Galerkin method. By choosing the numerical flux carefully, we prove that the scheme is unconditionally stable and convergent. Numerical results show that the method is effective for solving this kind of equations. In the future, we will develop the method discussed in this paper to solve various fractional problems in physical processes.

    This work is supported by the National Natural Science Foundation of China (12126315, 12126325, 12026263, 12026254), the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology, PR China (2018RCJH10), the Training Plan of Young Backbone Teachers in Henan University of Technology, PR China (21420049), the Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province, PR China (2019GGJS094), Scientific and Technological Research Projects in Henan Province (212102210612), and the Humanities and Social Science Youth Foundation of Ministry of Education of China (17YJC630084).

    The authors declare there is no conflicts of interest.



    [1] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [2] X. Gu, T. Huang, C. Ji, B. Carpentieri, A. A. Alikhanov, Fast iterative method with a second order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 72 (2017), 957–985. https://doi.org/10.1007/s10915-017-0388-9 doi: 10.1007/s10915-017-0388-9
    [3] J. H. He, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol. Soc., 15 (1999), 86–90.
    [4] A. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252–281. https://doi.org/10.1016/j.jmaa.2007.08.024 doi: 10.1016/j.jmaa.2007.08.024
    [5] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [6] Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [7] S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via-convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. https://doi.org/10.3390/math9151753 doi: 10.3390/math9151753
    [8] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22–37. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [9] B. Yilmaz, A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, Optik, 247 (2021), 168026. https://doi.org/10.1016/j.ijleo.2021.168026 doi: 10.1016/j.ijleo.2021.168026
    [10] Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329–341. https://doi.org/10.1016/j.amc.2014.03.066 doi: 10.1016/j.amc.2014.03.066
    [11] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [12] X. Gu, H. Sun, Y. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [13] M. H. Heydari, A. Atangana, A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative, Chaos, Solitons Fractals, 128 (2019), 339–348. https://doi.org/10.1016/j.chaos.2019.08.009 doi: 10.1016/j.chaos.2019.08.009
    [14] M. Hosseininia, M. H. Heydari, Z. Avazzadeh, F. M. M. Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793–802. https://doi.org/10.1515/ijnsns-2018-0168 doi: 10.1515/ijnsns-2018-0168
    [15] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [16] S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transforms Spec. Funct., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [17] J. E. Solis-Perez, J. F. Gmez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons Fractals, 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [18] S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012) 10861–10870. https://doi.org/10.1016/j.amc.2012.04.047
    [19] E. Alimirzaluo, M. Nadjafikhah, Some exact solutions of KdV-Burgers-Kuramoto equation, J. Phys. Commun., 3 (2019), 035025. https://doi.org/10.1088/2399-6528/ab103f doi: 10.1088/2399-6528/ab103f
    [20] B. I. Cohen, J. A. Krommes, W. M. Tang, M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971–992. https://doi.org/10.1088/0029-5515/16/6/009 doi: 10.1088/0029-5515/16/6/009
    [21] J. Topper, T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn., 44 (1978), 663–666. https://doi.org/10.1143/JPSJ.44.663 doi: 10.1143/JPSJ.44.663
    [22] J. Guo, C. Li, H. Ding, Finite difference methods for time subdiffusion equation with space fourth order, Commun. Appl. Math. Comput., 28 (2014), 96–108.
    [23] X. Hu, L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput., 218 (2012), 5019–5034. https://doi.org/10.1016/j.amc.2011.10.069 doi: 10.1016/j.amc.2011.10.069
    [24] X. R. Sun, C. Li, F. Q. Zhao, Local discontinuous Galerkin methods for the time tempered fractional diffusion equation, Appl. Math. Comput., 365 (2020), 124725. https://doi.org/10.1016/j.amc.2019.124725 doi: 10.1016/j.amc.2019.124725
    [25] M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer. Methods Partial Differ. Equations, 35 (2019), 1588–1612. https://doi.org/10.1002/num.22366 doi: 10.1002/num.22366
    [26] C. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
    [27] Y. Xu, C. W. Shu, Local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998–2021. https://doi.org/10.1137/070679764 doi: 10.1137/070679764
    [28] M. Fei, C. Huang, Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation, Int. J. Comput. Math., 97 (2020), 1183–1196. https://doi.org/10.1080/00207160.2019.1608968 doi: 10.1080/00207160.2019.1608968
    [29] N. Khalid, M. Abbas, M. K. Iqbal, Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms, Appl. Math. Comput., 349 (2019), 393–407. https://doi.org/10.1016/j.amc.2018.12.066 doi: 10.1016/j.amc.2018.12.066
    [30] Y. Liu, Y. Du, H. Li, Z. Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [31] M. Ran, C. Zhang, New compact difference scheme for solving the fourth order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
    [32] L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040
    [33] A. Secer, N. Ozdemir, An effective computational approach based on Gegenbauer wavelets for solving the time-fractional KdV-Burgers-Kuramoto equation, Adv. Differ. Equations, 386 (2019). https://doi.org/10.1186/s13662-019-2297-8
    [34] M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez, Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation, Open Phys., 15 (2017), 433–439. https://doi.org/10.1515/phys-2017-0048 doi: 10.1515/phys-2017-0048
    [35] J. M. Kim, C. B. Chun, New exact solutions to the KdV-Burgers-Kuramoto equation with the exp-function method, Abstr. Appl. Anal., 2012 (2012), 1–10. https://doi.org/10.1155/2012/892420 doi: 10.1155/2012/892420
    [36] D. Kaya, S. Glbahar, A. Yokus, Numerical solutions of the fractional KdV-Burgers-Kuramoto equation, Therm. Sci., 22 (2017), 153–158. https://doi.org/10.2298/TSCI170613281K doi: 10.2298/TSCI170613281K
    [37] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749–1779. https://doi.org/10.1137/S0036142901384162 doi: 10.1137/S0036142901384162
    [38] H. L. Atkins, C. W. Shu, Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations, AIAA J., 36 (1998), 775–782. https://doi.org/10.2514/2.436 doi: 10.2514/2.436
    [39] R. Biswas, K. D. Devine, J. E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14 (1994), 255–283. https://doi.org/10.1016/0168-9274(94)90029-9 doi: 10.1016/0168-9274(94)90029-9
    [40] D. Levy, C. W. Shu, J. Yan, Local Discontinuous Galerkin methods for nonlinear dispersive equations, J. Comput. Phys., 196 (2004), 751–772. https://doi.org/10.1016/j.jcp.2003.11.013 doi: 10.1016/j.jcp.2003.11.013
    [41] T. Ma, K. Zhang, W. Shen, C. Guo, H. Xu, Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media, Adv. Water Resour., 156 (2021), 104039. https://doi.org/10.1016/j.advwatres.2021.104039 doi: 10.1016/j.advwatres.2021.104039
    [42] K. Shukla, J. Chan, M. V. de Hoop, A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation, Comput. Math. Appl., 99 (2021), 113–132. https://doi.org/10.1016/j.camwa.2021.08.003 doi: 10.1016/j.camwa.2021.08.003
    [43] M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 119–133. https://doi.org/10.1016/j.cnsns.2018.09.004 doi: 10.1016/j.cnsns.2018.09.004
    [44] H. Wang, X. C. Zheng, Analysis and numerical solution of a nonlinear variable-order fractional differential equation, Adv. Comput. Math., 45 (2019), 2647–2675. https://doi.org/10.1007/s10444-019-09690-0 doi: 10.1007/s10444-019-09690-0
    [45] B. Cockburn, G. Kanschat, I. Perugia, D. Schotzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264–285. https://doi.org/10.1137/S0036142900371544 doi: 10.1137/S0036142900371544
    [46] Y. Xia, Y. Xu, C. W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), 821–835.
    [47] Q. Zhang, C. W. Shu, Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation with discontinuous initial solution, Numer. Math., 126 (2014), 703–740. https://doi.org/10.1007/s00211-013-0573-1 doi: 10.1007/s00211-013-0573-1
    [48] B. Cockburn, C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52 (1989), 411–435. https://doi.org/10.1090/S0025-5718-1989-0983311-4 doi: 10.1090/S0025-5718-1989-0983311-4
  • This article has been cited by:

    1. Lijie Liu, Xiaojing Wei, Leilei Wei, A fully discrete local discontinuous Galerkin method based on generalized numerical fluxes to variable-order time-fractional reaction-diffusion problem with the Caputo fractional derivative, 2023, 31, 2688-1594, 5701, 10.3934/era.2023289
    2. Junbiao Guan, Feng Wang, Investigating the dynamics, synchronization of a novel chaotic system reduced from a modified KdV–Burgers–Kuramoto equation, 2024, 0973-1458, 10.1007/s12648-024-03434-7
    3. Bazar Babajanov, Fakhriddin Abdikarimov, New exact soliton and periodic wave solutions of the nonlinear fractional evolution equations with additional term, 2023, 8, 26668181, 100567, 10.1016/j.padiff.2023.100567
    4. Hui Bi, Feilong Zhao, Bound-preserving schemes for $$P^2$$ local discontinuous Galerkin discretizations of KdV-type equations, 2025, 44, 2238-3603, 10.1007/s40314-024-03002-z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2570) PDF downloads(108) Cited by(4)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog