In this work, we consider a multi-dimensional dual-phase-lag problem arising in porous-thermoelasticity with microtemperatures. An existence and uniqueness result is proved by applying the semigroup of linear operators theory. Then, by using the finite element method and the Euler scheme, a fully discrete approximation is numerically studied, proving a discrete stability property and a priori error estimates. Finally, we perform some numerical simulations to demonstrate the accuracy of the approximation and the behavior of the solution in one- and two-dimensional problems.
Citation: N. Bazarra, J. R. Fernández, R. Quintanilla. A dual-phase-lag porous-thermoelastic problem with microtemperatures[J]. Electronic Research Archive, 2022, 30(4): 1236-1262. doi: 10.3934/era.2022065
In this work, we consider a multi-dimensional dual-phase-lag problem arising in porous-thermoelasticity with microtemperatures. An existence and uniqueness result is proved by applying the semigroup of linear operators theory. Then, by using the finite element method and the Euler scheme, a fully discrete approximation is numerically studied, proving a discrete stability property and a priori error estimates. Finally, we perform some numerical simulations to demonstrate the accuracy of the approximation and the behavior of the solution in one- and two-dimensional problems.
[1] | A. C. Eringen, Microcontinuum Field Theories I. Foundations and Solids, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4612-0555-5 |
[2] | D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic, Dordrecht, 2004. https://doi.org/10.1007/978-1-4020-2310-1_5 |
[3] | M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Rat. Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326 |
[4] | S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elast., 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230 |
[5] | S. C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elast., 15 (1985), 185–191. https://doi.org/10.1007/BF00041992 doi: 10.1007/BF00041992 |
[6] | J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363 |
[7] | D. Ieşan, A theory of thermoelastic materials with voids, Acta Mech., 60 (1986), 67–89. https://doi.org/10.1007/BF01302942 doi: 10.1007/BF01302942 |
[8] | T. A. Apalara, Exponential decay in one-dimensional porous elasticity, Quart. J. Mech. Appl. Math., 70 (2017), 363–372. https://doi.org/10.1093/qjmam/hbx012 doi: 10.1093/qjmam/hbx012 |
[9] | T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457–471 https://doi.org/10.1016/j.jmaa.2017.08.007 doi: 10.1016/j.jmaa.2017.08.007 |
[10] | N. Bazarra, J. R. Fernández, R. Quintanilla, An a priori error analysis of poro-thermoviscoelastic problems, Appl. Math. Comput., 379 (2020), 125268. https://doi.org/10.1016/j.amc.2020.125268 doi: 10.1016/j.amc.2020.125268 |
[11] | B. Feng, Uniform decay of energy for porous thermoelastic systems with past history, Appl. Anal., 97 (2018), 210–229. https://doi.org/10.1080/00036811.2016.1258116 doi: 10.1080/00036811.2016.1258116 |
[12] | B. Feng, T. A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl., 470 (2019), 1108–1128. https://doi.org/10.1016/j.jmaa.2018.10.052 doi: 10.1016/j.jmaa.2018.10.052 |
[13] | B. Feng, L. Yan, D. S. Almeida Junior, Stabilization for an inhomogeneous porous-elastic system with temperatures and microtemperatures, Z. Angew. Math. Mech., 101 (2021), e202000058. https://doi.org/10.1002/zamm.202000058 doi: 10.1002/zamm.202000058 |
[14] | B. Feng, M. Yin, Decay of solutions for one-dimensional porous elasticity system with memory: the case of nonequal waves speed, Math. Mech. Solids, 24 (2019), 2361–2373. https://doi.org/10.1177/1081286518757299 doi: 10.1177/1081286518757299 |
[15] | J. R. Fernández, M. Masid, Analysis of a problem arising in porous thermoelasticity of type II, J. Therm. Stress., 39 (2016), 513–531. https://doi.org/10.1080/01495739.2016.1158609 doi: 10.1080/01495739.2016.1158609 |
[16] | J. R. Fernández, M. Masid, Numerical analysis of a thermoelastic diffusion problem with voids, Int. J. Numer. Anal. Model., 14 (2017), 153–174. |
[17] | M. C. Leseduarte, A. Magaña, R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375–391. https://doi.org/10.3934/dcdsb.2010.13.375 doi: 10.3934/dcdsb.2010.13.375 |
[18] | A. Magaña, R. Quintanilla, On the exponential decay of solutions in one-dimensional generalized porous-thermoelasticity, Asymptot. Anal., 49 (2006), 173–187. |
[19] | A. Miranville, R. Quintanilla, Exponential stability in type III thermoelasticity with voids, Appl. Math. Lett., 94 (2019), 30–37. https://doi.org/10.1016/j.aml.2019.02.014 doi: 10.1016/j.aml.2019.02.014 |
[20] | D. Ieşan, R. Quintanilla, On a theory of thermoelasticity with microtemperatures, J. Therm. Stress., 23 (2000), 195–215. https://doi.org/10.1080/014957300280407 doi: 10.1080/014957300280407 |
[21] | D. Ieşan, R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl., 354 (2009), 12–23. https://doi.org/10.1016/j.jmaa.2008.12.017 doi: 10.1016/j.jmaa.2008.12.017 |
[22] | C. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation, C. R. Acad. Sci. Paris, 247 (1958), 431–433. |
[23] | D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8–16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329 |
[24] | Z. Liu, R. Quintanilla, Time decay in dual-phase-lag thermoelasticity: critical case, Comm. Pure Appl. Anal., 17 (2018), 177–190. https://doi.org/10.3934/cpaa.2018011 doi: 10.3934/cpaa.2018011 |
[25] | F. Maes, K. Van Bockstal, Thermoelastic problem in the setting of dual-phase-lag heat conduction: Existence and uniqueness of a weak solution, J. Math. Anal. Appl., 503 (2021), 125304. https://doi.org/10.1016/j.jmaa.2021.125304 doi: 10.1016/j.jmaa.2021.125304 |
[26] | R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977–1001. https://doi.org/10.1137/05062860X doi: 10.1137/05062860X |
[27] | N. Bazarra, M. I. M. Copetti, J. R. Fernández, R.Quintanilla, Numerical analysis of a dual-phase-lag model with microtemperatures, Appl. Num. Math., 166 (2021), 1–25. https://doi.org/10.1016/j.apnum.2021.03.016 doi: 10.1016/j.apnum.2021.03.016 |
[28] | Z. Liu, R. Quintanilla, Y. Wang, Dual-phase-lag heat conduction with microtemperatures, Z. Angew. Math. Mech., 101 (2021), e202000167. https://doi.org/10.1002/zamm.202000167 doi: 10.1002/zamm.202000167 |
[29] | P. G. Ciarlet, Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions eds., vol II (1993), 17–351. https://doi.org/10.1016/S1570-8659(05)80039-0 |
[30] | Ph. Clement, Approximation by finite element functions using local regularization, RAIRO Math. Model. Numer. Anal., 9 (1975), 77–84. https://doi.org/10.1051/m2an/197509R200771 doi: 10.1051/m2an/197509R200771 |
[31] | M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006 |