In this paper, an effective numerical method for solving the variable-order(VO) fractional reaction diffusion equation with the Caputo fractional derivative is constructed and analyzed. Based on the generalized alternating numerical flux, we get a fully discrete local discontinuous Galerkin scheme for the problem. From a practical standpoint, the generalized alternating numerical flux, which is distinct from the purely alternating numerical flux, has a more extensive scope. For $ 0 < \alpha(t) < 1 $, we prove that the method is unconditionally stable and the errors attain $ (k+1) $-th order of accuracy for piecewise $ P^k $ polynomials. Finally, some numerical experiments are performed to show the effectiveness and verify the accuracy of the method.
Citation: Lijie Liu, Xiaojing Wei, Leilei Wei. A fully discrete local discontinuous Galerkin method based on generalized numerical fluxes to variable-order time-fractional reaction-diffusion problem with the Caputo fractional derivative[J]. Electronic Research Archive, 2023, 31(9): 5701-5715. doi: 10.3934/era.2023289
In this paper, an effective numerical method for solving the variable-order(VO) fractional reaction diffusion equation with the Caputo fractional derivative is constructed and analyzed. Based on the generalized alternating numerical flux, we get a fully discrete local discontinuous Galerkin scheme for the problem. From a practical standpoint, the generalized alternating numerical flux, which is distinct from the purely alternating numerical flux, has a more extensive scope. For $ 0 < \alpha(t) < 1 $, we prove that the method is unconditionally stable and the errors attain $ (k+1) $-th order of accuracy for piecewise $ P^k $ polynomials. Finally, some numerical experiments are performed to show the effectiveness and verify the accuracy of the method.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, 2006. |
[2] | C. P. Li, F. H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015. |
[3] | I. Podlubny, Fractional Differential Equations, Academic Press, 1999. |
[4] | G. Andrew, A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies, J. Appl. Phys., 7 (1936), 311–317. https://doi.org/10.1063/1.1745400 doi: 10.1063/1.1745400 |
[5] | M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl Geophys, 91 (1971), 134–147. https://doi.org/10.1007/BF00879562 doi: 10.1007/BF00879562 |
[6] | J. H. He, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol., 15 (1999), 86–90. |
[7] | Z. Jiao, Y. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer, 2012. https://doi.org/10.1007/978-1-4471-2852-6 |
[8] | X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192 |
[9] | X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270 |
[10] | S. Chen, J. Shen, L. L. Wang, Generalized Jacobi functions and their applications tofractional differential equations, Math. Comp., 85 (2016), 1603–1638. https://doi.org/10.1090/mcom3035 doi: 10.1090/mcom3035 |
[11] | S. Guo, L. Mei, Z. Zhang, Y. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math. Lett., 85 (2018, ) 157–163. https://doi.org/10.1016/j.aml.2018.06.005 |
[12] | C. P. Li, F. H. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), 383–406. https://doi.org/10.2478/s13540-012-0028-x doi: 10.2478/s13540-012-0028-x |
[13] | X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942 |
[14] | Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001 |
[15] | F. Y. Song, C. J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys., 299 (2015), 196–214. https://doi.org/10.1016/j.jcp.2015.07.011 doi: 10.1016/j.jcp.2015.07.011 |
[16] | J. Guo, C. Li, H. Ding, Finite difference methods for time sub-diffusion equation with space fourth order, Commun. Appl. Math. Comput., 28 (2014), 96–108. |
[17] | J. L. Gracia, M. Stynes, Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273 (2015), 103–115. https://doi.org/10.1016/j.cam.2014.05.025 doi: 10.1016/j.cam.2014.05.025 |
[18] | M. Li, X. M. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Compu. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044 |
[19] | E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22–37. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007 |
[20] | W. Bu, A. Xiao, W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422–441. https://doi.org/10.1007/s10915-017-0360-8 doi: 10.1007/s10915-017-0360-8 |
[21] | V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Eq., 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112 |
[22] | L. Feng, P. Zhuang, F. Liu, I. Turner, Y. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algor., 72 (2016), 749–767. https://doi.org/10.1007/s11075-015-0065-8 doi: 10.1007/s11075-015-0065-8 |
[23] | Y. N. He, W. W. Sun, Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations, SIAM J. Numer. Anal., 45 (2007), 837–869. https://doi.org/10.1137/050639910 doi: 10.1137/050639910 |
[24] | Y. N. He, J. Li, Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1351–1359. https://doi.org/10.1016/j.cma.2008.12.001 doi: 10.1016/j.cma.2008.12.001 |
[25] | H. Wang, D. Yang, S. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM J. Numer. Anal., 52 (2014), 1292–1310. https://doi.org/10.1137/130932776 doi: 10.1137/130932776 |
[26] | B. Cockburn, C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440–2463. https://doi.org/10.1137/S0036142997316712 doi: 10.1137/S0036142997316712 |
[27] | L. Guo, Z. Wang, S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840 |
[28] | Y. Liu, M. Zhang, H. Li, J.C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional sub-diffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015 |
[29] | L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040 |
[30] | L. Wei, X. Wei, B. Tang, Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation, Electronic. Res. Arch., 30 (2022), 1263–1281. https://doi.org/10.3934/era.2022066 doi: 10.3934/era.2022066 |
[31] | M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural Comput & Applic., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6 |
[32] | Y. Mahsud, N. A. Shah, D. Vieru, Influence of time-fractional derivatives on the boundary layer flow of Maxwell fluids, Chinese J. Phys., 55 (2017), 1340–1351. https://doi.org/10.1016/j.cjph.2017.07.006 doi: 10.1016/j.cjph.2017.07.006 |
[33] | N. A. Shah, C. Fetecau, D. Vieru, Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport, J. Therm. Anal. Calorim., 143 (2021), 2245–2258. https://doi.org/10.1007/s10973-020-09835-0 doi: 10.1007/s10973-020-09835-0 |
[34] | J. Shu, Q. Q. Bai, X. Huang, J. Zhang, Finite fractal dimension of random attractors for non-autonomous fractional stochastic reaction-diffusion equations in $\mathbb{R}$, Appl. Anal., (2020), 1–22. |
[35] | M. Stynes, E. O'Riordan, J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329 |
[36] | C. Huang, M. Stynes, A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition, Appl. Numer. Math., (2018). https://doi.org/10.1016/j.apnum.2018.08.006 |
[37] | V. K. Baranwal, R. K. Pandey, M. P. Tripathi, O. P. Singh, An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method, Commun Nonlinear Sci Numer Simulat, 17 (2012), 3906–3921. https://doi.org/10.1016/j.cnsns.2012.02.015 doi: 10.1016/j.cnsns.2012.02.015 |
[38] | S. Ali, S. Bushnaq, K. Shah, M. Arif, Numerical treatment of fractional order Cauchy reaction diffusion equations, Chaos, Solitons and Fractals, 103 (2017), 578–587. https://doi.org/10.1016/j.chaos.2017.07.016 doi: 10.1016/j.chaos.2017.07.016 |
[39] | H. Safdari, M. Rajabzadeh, M. Khalighi, LDG approximation of a nonlinear fractional convection-diffusion equation using B-spline basis functions, Appl. Numer. Math., 171 (2022), 45–57. https://doi.org/10.1016/j.apnum.2021.08.014 doi: 10.1016/j.apnum.2021.08.014 |
[40] | Y. Xu, C. W. Shu, Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation, Commun. Comput. Phys., 10 (2011), 474–508. https://doi.org/10.4208/cicp.300410.300710a doi: 10.4208/cicp.300410.300710a |
[41] | C. B. Huang, M. Stynes, Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation, J. Comput. Appl. Math., 367 (2020), 112435. https://doi.org/10.1016/j.cam.2019.112435 doi: 10.1016/j.cam.2019.112435 |
[42] | Y. Cheng, Q. Zhang, H. Wang, Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem, Int. J. Numer. Anal. Modeling, 15 (2018), 785–810. |
[43] | Y. Cheng, X. Meng, Q. Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), 1233–1267. https://doi.org/10.1090/mcom/3141 doi: 10.1090/mcom/3141 |