In this paper we study the existence of nontrivial solutions of a class of asymptotically resonant problems driven by a non-local integro-differential operator with homogeneous Dirichlet boundary conditions by applying Morse theory and critical groups for a $ C^{2} $ functional at both isolated critical points and infinity.
Citation: Yutong Chen, Jiabao Su. Resonant problems for non-local elliptic operators with unbounded nonlinearites[J]. Electronic Research Archive, 2023, 31(9): 5716-5731. doi: 10.3934/era.2023290
In this paper we study the existence of nontrivial solutions of a class of asymptotically resonant problems driven by a non-local integro-differential operator with homogeneous Dirichlet boundary conditions by applying Morse theory and critical groups for a $ C^{2} $ functional at both isolated critical points and infinity.
[1] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[2] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI 1986. |
[3] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[4] | G. M. Bisci, R. Servadei, A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal. Theory Methods Appl., 119 (2015), 341–353. https://doi.org/10.1016/j.na.2014.10.025 doi: 10.1016/j.na.2014.10.025 |
[5] | G. M. Bisci, D. Mugnai, R. Servadei, On multiple solutions for nonlocal fractional problems via $\nabla$-theorems, Differ. Integr. Equations, 30 (2017), 641–666. |
[6] | A. Fiscella, R. Servadei, E. Valdinoci, A resonance problem for non-Local elliptic operators, Zeitschrift für Analysis und ihre Anwendungen, 32 (2013), 411–431. https://doi.org/10.4171/ZAA/1492 doi: 10.4171/ZAA/1492 |
[7] | A. Fiscella, R. Servadei, E. Valdinoci, Asymptotically linear problems driven by fractionl operators, Math. Methods Appl. Sci., 38 (2015), 3551–3563. https://doi.org/10.1002/mma.3438 doi: 10.1002/mma.3438 |
[8] | D. Mugnai, D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111–124. https://doi.org/10.1515/acv-2015-0032 doi: 10.1515/acv-2015-0032 |
[9] | R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal., 43 (2014), 251–267. |
[10] | R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032 |
[11] | R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445–2464. https://doi.org/10.3934/cpaa.2013.12.2445 doi: 10.3934/cpaa.2013.12.2445 |
[12] | R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137. https://doi.org/10.3934/10.3934/dcds.2013.33.2105 doi: 10.3934/10.3934/dcds.2013.33.2105 |
[13] | R. Servadei, E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4 |
[14] | R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal., 2 (2013), 235–270. https://doi.org/10.1515/anona-2013-0008 doi: 10.1515/anona-2013-0008 |
[15] | E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609–623. |
[16] | M. M. Fall, V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equations, 39 (2014), 354–397. https://doi.org/10.1080/03605302.2013.825918 doi: 10.1080/03605302.2013.825918 |
[17] | T. Bartsch, S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. Theory Methods Appl., 28 (1997), 419–441. https://doi.org/10.1016/0362-546X(95)00167-T doi: 10.1016/0362-546X(95)00167-T |
[18] | J. Su, L. Zhao, An elliptic resonance problem with multiple solutions, J. Math. Appl. Appl., 319 (2006), 604–616. https://doi.org/10.1016/j.jmaa.2005.10.059 doi: 10.1016/j.jmaa.2005.10.059 |
[19] | J. Su, Semilinear elliptic resonant problems at higher eigenvalue with unbounded nonlinear terms, Acta Math. Sin., 14 (1998), 411–419. https://doi.org/10.1007/BF02580445 doi: 10.1007/BF02580445 |
[20] | K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, Birkhauser, Boston, 1993. |
[21] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer, Berlin, 1989. |
[22] | R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091–1126. https://doi.org/10.4171/RMI/750 doi: 10.4171/RMI/750 |
[23] | J. Liu, A Morse index for a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32–39. |
[24] | J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal. Theory Methods Appl., 48 (2002), 881–895. https://doi.org/10.1016/S0362-546X(00)00221-2 doi: 10.1016/S0362-546X(00)00221-2 |
[25] | Z. Q. Wang, Multiple solutions for indefinite functionals and applications to asymptotically linear problems, Acta Math. Sin., 5 (1989), 101–113. https://doi.org/10.1007/BF02107664 doi: 10.1007/BF02107664 |
[26] | Y. Chen, J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163–187. https://doi.org/10.3934/cpaa.2017008 doi: 10.3934/cpaa.2017008 |
[27] | D. Gromoll, M. Meyer, On differential functions with isolated point, Topology, 8 (1969), 361–369. https://doi.org/10.1016/0040-9383(69)90022-6 doi: 10.1016/0040-9383(69)90022-6 |
[28] | S. Li, J. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tongbao, 17 (1984), 1025–1027. |
[29] | S. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6–32. |
[30] | J. Liu, J. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209–222. https://doi.org/10.1006/jmaa.2000.7374 doi: 10.1006/jmaa.2000.7374 |