Research article Special Issues

Resonant problems for non-local elliptic operators with unbounded nonlinearites

  • Received: 11 April 2023 Revised: 28 June 2023 Accepted: 11 July 2023 Published: 17 August 2023
  • In this paper we study the existence of nontrivial solutions of a class of asymptotically resonant problems driven by a non-local integro-differential operator with homogeneous Dirichlet boundary conditions by applying Morse theory and critical groups for a $ C^{2} $ functional at both isolated critical points and infinity.

    Citation: Yutong Chen, Jiabao Su. Resonant problems for non-local elliptic operators with unbounded nonlinearites[J]. Electronic Research Archive, 2023, 31(9): 5716-5731. doi: 10.3934/era.2023290

    Related Papers:

  • In this paper we study the existence of nontrivial solutions of a class of asymptotically resonant problems driven by a non-local integro-differential operator with homogeneous Dirichlet boundary conditions by applying Morse theory and critical groups for a $ C^{2} $ functional at both isolated critical points and infinity.



    加载中


    [1] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI 1986.
    [3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [4] G. M. Bisci, R. Servadei, A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal. Theory Methods Appl., 119 (2015), 341–353. https://doi.org/10.1016/j.na.2014.10.025 doi: 10.1016/j.na.2014.10.025
    [5] G. M. Bisci, D. Mugnai, R. Servadei, On multiple solutions for nonlocal fractional problems via $\nabla$-theorems, Differ. Integr. Equations, 30 (2017), 641–666.
    [6] A. Fiscella, R. Servadei, E. Valdinoci, A resonance problem for non-Local elliptic operators, Zeitschrift für Analysis und ihre Anwendungen, 32 (2013), 411–431. https://doi.org/10.4171/ZAA/1492 doi: 10.4171/ZAA/1492
    [7] A. Fiscella, R. Servadei, E. Valdinoci, Asymptotically linear problems driven by fractionl operators, Math. Methods Appl. Sci., 38 (2015), 3551–3563. https://doi.org/10.1002/mma.3438 doi: 10.1002/mma.3438
    [8] D. Mugnai, D. Pagliardini, Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111–124. https://doi.org/10.1515/acv-2015-0032 doi: 10.1515/acv-2015-0032
    [9] R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal., 43 (2014), 251–267.
    [10] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
    [11] R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445–2464. https://doi.org/10.3934/cpaa.2013.12.2445 doi: 10.3934/cpaa.2013.12.2445
    [12] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137. https://doi.org/10.3934/10.3934/dcds.2013.33.2105 doi: 10.3934/10.3934/dcds.2013.33.2105
    [13] R. Servadei, E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
    [14] R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal., 2 (2013), 235–270. https://doi.org/10.1515/anona-2013-0008 doi: 10.1515/anona-2013-0008
    [15] E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609–623.
    [16] M. M. Fall, V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equations, 39 (2014), 354–397. https://doi.org/10.1080/03605302.2013.825918 doi: 10.1080/03605302.2013.825918
    [17] T. Bartsch, S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. Theory Methods Appl., 28 (1997), 419–441. https://doi.org/10.1016/0362-546X(95)00167-T doi: 10.1016/0362-546X(95)00167-T
    [18] J. Su, L. Zhao, An elliptic resonance problem with multiple solutions, J. Math. Appl. Appl., 319 (2006), 604–616. https://doi.org/10.1016/j.jmaa.2005.10.059 doi: 10.1016/j.jmaa.2005.10.059
    [19] J. Su, Semilinear elliptic resonant problems at higher eigenvalue with unbounded nonlinear terms, Acta Math. Sin., 14 (1998), 411–419. https://doi.org/10.1007/BF02580445 doi: 10.1007/BF02580445
    [20] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, Birkhauser, Boston, 1993.
    [21] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer, Berlin, 1989.
    [22] R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091–1126. https://doi.org/10.4171/RMI/750 doi: 10.4171/RMI/750
    [23] J. Liu, A Morse index for a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32–39.
    [24] J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal. Theory Methods Appl., 48 (2002), 881–895. https://doi.org/10.1016/S0362-546X(00)00221-2 doi: 10.1016/S0362-546X(00)00221-2
    [25] Z. Q. Wang, Multiple solutions for indefinite functionals and applications to asymptotically linear problems, Acta Math. Sin., 5 (1989), 101–113. https://doi.org/10.1007/BF02107664 doi: 10.1007/BF02107664
    [26] Y. Chen, J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163–187. https://doi.org/10.3934/cpaa.2017008 doi: 10.3934/cpaa.2017008
    [27] D. Gromoll, M. Meyer, On differential functions with isolated point, Topology, 8 (1969), 361–369. https://doi.org/10.1016/0040-9383(69)90022-6 doi: 10.1016/0040-9383(69)90022-6
    [28] S. Li, J. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tongbao, 17 (1984), 1025–1027.
    [29] S. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6–32.
    [30] J. Liu, J. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209–222. https://doi.org/10.1006/jmaa.2000.7374 doi: 10.1006/jmaa.2000.7374
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(799) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog