
Flajolet and Françon [European. J. Combin. 10 (1989) 235-241] gave a combinatorial interpretation for the Taylor coefficients of the Jacobian elliptic functions in terms of doubled permutations. We show that a multivariable counting of the doubled permutations has also an explicit continued fraction expansion generalizing the continued fraction expansions of Rogers and Stieltjes. The second goal of this paper is to study the expansion of the Taylor coefficients of the generalized Jacobian elliptic functions, which implies the symmetric and unimodal property of the Taylor coefficients of the generalized Jacobian elliptic functions. The main tools are the combinatorial theory of continued fractions due to Flajolet and bijections due to Françon-Viennot, Foata-Zeilberger and Clarke-Steingrímsson-Zeng.
Citation: Bin Han. Some multivariate polynomials for doubled permutations[J]. Electronic Research Archive, 2021, 29(2): 1925-1944. doi: 10.3934/era.2020098
[1] | Bin Han . Some multivariate polynomials for doubled permutations. Electronic Research Archive, 2021, 29(2): 1925-1944. doi: 10.3934/era.2020098 |
[2] | Guo-Niu Han . On the existence of permutations conditioned by certain rational functions. Electronic Research Archive, 2020, 28(1): 149-156. doi: 10.3934/era.2020009 |
[3] | Heesung Shin, Jiang Zeng . More bijections for Entringer and Arnold families. Electronic Research Archive, 2021, 29(2): 2167-2185. doi: 10.3934/era.2020111 |
[4] | Shishuo Fu, Zhicong Lin, Yaling Wang . Refined Wilf-equivalences by Comtet statistics. Electronic Research Archive, 2021, 29(5): 2877-2913. doi: 10.3934/era.2021018 |
[5] | Kelvyn Bladen, D. Richard Cutler . Assessing agreement between permutation and dropout variable importance methods for regression and random forest models. Electronic Research Archive, 2024, 32(7): 4495-4514. doi: 10.3934/era.2024203 |
[6] | Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106 |
[7] | Caiwen Chen, Tianxiu Lu, Ping Gao . Chaotic performance and circuitry implement of piecewise logistic-like mapping. Electronic Research Archive, 2025, 33(1): 102-120. doi: 10.3934/era.2025006 |
[8] | Zhuo Ba, Xianyi Li . Period-doubling bifurcation and Neimark-Sacker bifurcation of a discrete predator-prey model with Allee effect and cannibalism. Electronic Research Archive, 2023, 31(3): 1405-1438. doi: 10.3934/era.2023072 |
[9] | Ye Yu, Zhiyuan Liu . A data-driven on-site injury severity assessment model for car-to-electric-bicycle collisions based on positional relationship and random forest. Electronic Research Archive, 2023, 31(6): 3417-3434. doi: 10.3934/era.2023173 |
[10] | Qingcong Song, Xinan Hao . Positive solutions for fractional iterative functional differential equation with a convection term. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096 |
Flajolet and Françon [European. J. Combin. 10 (1989) 235-241] gave a combinatorial interpretation for the Taylor coefficients of the Jacobian elliptic functions in terms of doubled permutations. We show that a multivariable counting of the doubled permutations has also an explicit continued fraction expansion generalizing the continued fraction expansions of Rogers and Stieltjes. The second goal of this paper is to study the expansion of the Taylor coefficients of the generalized Jacobian elliptic functions, which implies the symmetric and unimodal property of the Taylor coefficients of the generalized Jacobian elliptic functions. The main tools are the combinatorial theory of continued fractions due to Flajolet and bijections due to Françon-Viennot, Foata-Zeilberger and Clarke-Steingrímsson-Zeng.
For a fixed modulus
sn(z,x)=yiffz=∫y0dt√(1−t2)(1−x2t2). |
The other two Jacobi elliptic functions are respectively defined by
cn(z,x):=√1−sn2(z,x),dn(z,x):=√1−x2sn2(z,x). |
These functions appear in a variety of problems in physics and have been extensively studied in mathematical physics, algebraic geometry, combinatorics and number theory (see [5,6,8,9,11,12,19,20,21,27,28] for instance). When
sn(z,0)=sinz,cn(z,0)=cosz,dn(z,0)=1,sn(z,1)=tanhz,cn(z,1)=dn(z,1)=sech z. |
The three Jacobi elliptic functions are connected by the differential system (see [2]):
{ddzsn(z,x)=cn(z,x)dn(z,x),ddzcn(z,x)=−sn(z,x)dn(z,x),ddzdn(z,x)=−x2sn(z,x)cn(z,x). | (1) |
Note that
(−i)⋅sn(iz,1)+cn(iz,1)=tanz+secz=∞∑n=0Enznn!, | (2) |
where
sn(z,x)=z−(1+x2)z33!+(1+14x2+x4)z55!−(1+135x2+135x4+x6)+⋯, | (3) |
cn(z,x)=1−z22!+(1+4x2)z44!−(1+44x2+16x4)z66!+⋯, | (4) |
dn(z,x)=1−x2z22!+x2(4+x2)z44!−x2(16+44x2+x4)z66!+⋯. | (5) |
Defining the Laplace-Borel transforms of
S1(z,x)=∫∞0e−tsn(zt,x)dtandC0(z,x)=∫∞0e−tcn(zt,x)dt, |
i.e., the series obtained from (3) and (4) by replacing
S1(z,x)=z1+(1+x2)z2−1⋅22⋅3⋅x2z41+(1+x2)⋅32z2−3⋅42⋅5⋅x2z41+(1+x2)⋅52z2−⋯, | (6) |
C0(z,x)=11+z2−12⋅22⋅x2z41+(32+22x2)z2−32⋅42⋅x2z41+(52+42x2)z2−⋯. | (7) |
According to [12], the question of the possible combinatorial significance of the coefficients of
1+∞∑n=1(−1)nJ2n(x)z2n(2n)!+∞∑n=0(−1)nJ2n+1(x)z2n+1(2n+1)!=cn(z,x)+sn(z,x) |
was first raised by Schützenberger. The first combinatorial interpretation was given by Viennot [28], and is expressed in terms of so-called Jacobi permutations. Using his combinatorial theory of continued fractions Flajolet [11] proved that the coefficients of
A polynomial
In this paper, by generalizing the continued fraction expansions of Rogers and Stieltjes, we generalize Flajolet and Françon's the combinatorial interpretation of the Taylor coefficients of the Jacobian elliptic functions. Furthermore, we show that the Taylor coefficients of the generalized Jacobian elliptic functions are
We follow [4,17,16,22,23] for notations and the nomenclature of various permutation statistics. First we recall three classical involutions defined on
πr:=π(n)⋯π(2)π(1),πc:=(n+1−π(1))(n+1−π(2))⋯(n+1−π(n)),πrc:=(n+1−π(n))⋯(n+1−π(2))(n+1−π(1)). |
Denote by
Let
Definition 2.1. For
● a peak if
● a valley if
● a double ascent if
● a double descent if
Let
For
Definition 2.2. For
σ∗=(012…nnσ(1)−1σ(2)−1…σ(n)−1). | (8) |
Any entry
Cpeak∗σ={i∈[n−1]:(σ∗)−1(i)<i>σ∗(i)}, | (9) |
Cval∗σ={i∈[n−1]:(σ∗)−1(i)>i<σ∗(i)}, | (10) |
Cda∗σ∪Fix∗σ={i∈[n−1]:(σ∗)−1(i)<i<σ∗(i)}∪{i∈[n−1]:i=σ∗(i)}, | (11) |
Cdd∗σ={i∈[n−1]:(σ∗)−1(i)>i>σ∗(i)}. | (12) |
The corresponding cardinalties are denoted by
Definition 2.3. A permutation is a doubled permutation iff for all
For example,
The first goal of this paper is to explore the coefficients in the Taylor series expansion of Jacobi elliptic functions
For
crosiσ=#{j:j<i<σ(j)<σ(i)orσ(i)<σ(j)≤i<j}, | (13) |
nestiσ=#{j:j<i<σ(i)<σ(j)orσ(j)<σ(i)≤i<j}. | (14) |
Let
Let
∑n≥0(−1)nJ2n+1(p,q,x,u,v,w)z2n+1=z1+(u2+x2v2)[1]2p,qz2−[1]p,q[2]2p,q[3]p,qx2w2z41+(u2+x2v2)[3]2p,qz2−[3]p,q[4]2p,q[5]p,qx2w2z4⋯, | (15) |
where
Theorem 2.4. We have
J2n+1(p,q,x,u,v,w):=∑π∈DP2n+1p(2-13)πq(31-2)πxdesπudaπvddπwvalπ | (16) |
=∑π∈DP∗2n+1pnestπqcrosπxexcπucdd∗πv(cda∗+fix∗)πwcval∗π. | (17) |
As
J2n+1(x)=∑π∈DP2n+1xdesπ | (18) |
=∑σ∈DP∗2n+1xexcπ. | (19) |
Eq. (18) is due to Flajolet-Françon[12].
Theorem 2.5. We have
J2n+1(p,q,x,u,v,w)=⌊n/2⌋∑k=0a2n+1,2k(p,q)(xw)2k(u2+v2x2)n−2k, | (20) |
where
a2n+1,2k(p,q):=∑π∈DP2n+1,2kp(2-13)πq(31-2)π, | (21) |
and
DP2n+1,2k:={π∈DP2n+1,dd(π)=0,valπ=desπ=2k}. |
Moreover, for all
(p+q)2k|a2n+1,2k(p,q). | (22) |
In particular, we obtain the following expansion of
Corollary 1. For all
J2n+1(x)=⌊n2⌋∑k=0|DP2n+1,2k|x2k(1+x2)n−2k. | (23) |
Remark 1. Using context-free grammar Ma-Ma-Yeh-Zhou gave another interpretation of
The second goal of this paper is to explore the coefficients in the Taylor series expansion of Jacobi elliptic functions
Definition 2.6. For
● a cyclic peak if
● a cyclic valley if
● a double excedance(resp. fixed point) if
● a double drop if
Let
Definition 2.7. For
For instance,
Definition 2.8. A permutation
Let
∑n≥0(−1)nJ2n(p,q,x,u,v,w,y)z2n=11+y2z2−[1]2p,q[2]2p,qx2w2z41+((qu[2]p,q+p2y)2+x2v2[2]2p,q)z2−[3]2p,q[4]2p,qx2w2z4⋯. | (24) |
Theorem 2.9. We have
J2n(p,q,x,u,v,w,y)=∑π∈LDP2np(2-31)πq(31-2)πxdesπuldaπ−fmaxπvlddπwlvalπyfmaxπ | (25) |
=∑σ∈CDP2npnestπqcrosπxexcπucddπvcdaπwcvalπyfixπ. | (26) |
Since
J2n(x)=∑π∈LDP2nxdesπ | (27) |
=∑σ∈CDP2nxexcπ. | (28) |
Eq. (27) is due to Flajolet-Françon [12].
When
J2n(p,q,1,0,1,w,y):=∑k,j≥0b2n,2k,2j(p,q)w2ky2j, | (29) |
where
Corollary 2. We have
b2n,2k,2j(p,q)=∑σ∈CDP2n,2k,2jpnestσqcrosσ=∑σ∈LDP2n,2k,2jp(2-31)σq(31-2)σ. | (30) |
In particular, when
b2n,2k,0(p,q)=∑σ∈DD2n,2k,0pnestσqcrosσ=∑σ∈DD∗2n,2k,0p(2-31)σq(31-2)σ, | (31) |
where
Recall (see [22]) that a coderangement is a permutation without foremaximum. Let
DD2n(p,q,x,u,v,w):=J2n(p,q,x,u,v,w,0). |
Theorem 2.10. We have
DD2n(p,q,x,u,v,w)=⌊(n)/2⌋∑k=0b2n,2k,0(p,q)(xw)2k(q2u2+x2v2)n−2k. | (32) |
A pair of integers
As
Corollary 3. For all positive integers
∑π∈DD2nqstatπxexcπ=⌊n/2⌋∑k=0(∑π∈DD2n,2k,0qstatπ)x2k(1+x2)n−2k. | (33) |
For any permutation
Theorem 2.11. We have
∑σ∈DD2nqcycπxexcπ=⌊n/2⌋∑k=0(∑π∈DD2n,2k,0qcycπ)x2k(1+x2)n−2k. | (34) |
The rest of this paper is organized as follows. In Section 3, we recall some definitions and preliminaries of combinatorial theory of continued fractions. In Sections 4–7 we shall prove Theorem 2.4, Theorem 2.5, Theorem 2.9, Theorem 2.10 and Theorem 2.11, respectively. In Section 8, we refine the enumeration results on alternating permutations, which are related to the combinatorial interpretations of Jacobi elliptic functions.
A Motzkin path of length
A 2-Motzkin path is a Motzkin path consists of two types of horizontal steps, either blue or red. The set of 2-Motzkin path of length
∞∑n=0∑γ∈CMnw(γ)zn=11−(b0+b′0)z−a0c1z21−(b1+b′1)z−a1c2z2⋱. | (35) |
A 2-Motzkin path is a doubled path if the step at odd position is always followed by a step of the same type. See Figure 1 for a doubled path
Grouping steps 2 by 2 in a doubled path of length
Lemma 3.1. If
∞∑n=0∑γ∈DM2nw(γ)zn=11−(b02+b′02)z−a0a1c2c1z21−(b22+b′22)z−a2a3c4c3z2⋱. | (36) |
Definition 3.2. A Laguerre history (restricted Laguerre history) of length
Clarke-Steingrímsson-Zeng [4] gave a direct bijection
Lemma 4.1 (Han-Mao-Zeng). For
(Val,Pk∖{n},Dd,Da)σ=(Cval∗,Cpeak∗,Cda∗∪Fix∗,Cdd∗)Ψ∗(σ) | (37) |
and
((2-13)i,(31-2)i)σ=(nesti,crosi)Ψ∗(σ)fori∈[n]. | (38) |
Let
wex∗σ=#{i∈[n−1]:i≤σ∗(i)=σ(i)−1}(=excσ). |
As
Theorem 4.2. Let
(2-13,31-2,des,da,dd,val)σ=(nest,cros,exc,cdd∗,cda∗+fix∗,cval∗)~Ψ∗(σ). | (39) |
Proof of Theorem 2.4. For
(31-2)kσ=#{i:i+1<j and σ(i+1)<σ(j)=k<σ(i)},(2-31)kσ=#{i:j<i−1 and σ(i)<σ(j)=k<σ(i−1)},(2-13)kσ=#{i:j<i−1 and σ(i−1)<σ(j)=k<σ(i)}. |
We use Françon-Viennot's bijection
● the step
● the step
● the step
● the step
While
According to definition of
(31-2)iσ+(2-13)iσ={(31-2)i−1σ+(2-13)i−1σ−1if i−1 is a peak,(31-2)i−1σ+(2-13)i−1σ+1if i−1 is a valley,(31-2)i−1σ+(2-13)i−1σif i−1 is a double ascent,(31-2)i−1σ+(2-13)i−1σif i−1 is a double descent. |
By inductions we have
(31-2)iσ+(2-13)iσ=hiif i is a valley. |
Similarly, it is not difficult to prove by induction that
Since
w(σ)=xERγ+NEγuEBγvERγwNEγ2n∏i=1ppiqhi−pi, |
where
J2n+1(p,q,x,u,v,w)=∑γ∈DM2nxERγ+NEγuEBγvERγwNEγ2n∏i=1[hi+1]p,q, | (40) |
where
ak:=xw[k+1]p,q,bk:=u[k+1]p,q,b′k:=xv[k+1]p,q,ck:=[k+1]p,q, | (41) |
if the step is North-East, East blue, East red and South-East, respectively, and the weight of
J2n+1(p,q,x,u,v,w)=∑γ∈DM2nw(γ). | (42) |
By Lemma 3.1,
∑n≥0J2n+1(p,q,x,u,v,w)zn=11−(u2+x2v2)[1]2p,qz−[1]p,q[2]2p,q[3]p,qx2w2z21−(u2+x2v2)[3]2p,qz−[3]p,q[4]2p,q[5]p,qx2w2z2⋯, | (43) |
by transforming
Proof of Theorem 2.5. In view of (43), for
J2n+1(p,q,x,u,v,w)=⌊n/2⌋∑k=0a2n+1,2k(p,q,x,u,v)w2k. | (44) |
Transforming
∑n≥0⌊n/2⌋∑k=0a2n+1,2k(p,q,x,u,v)x2k(u2+x2v2)n−2kw2kzn=11−[1]2p,qz−[1]p,q[2]2p,q[3]p,qw2z21−[3]2p,qz−[3]p,q[4]2p,q[5]2p,qw2z21−[5]2p,qz−[5]p,q[6]2p,q[7]p,qw2z2⋯. | (45) |
Since the right-hand side of the above identity is free of variables
P2n+1,2k(p,q):=a2n+1,2k(p,q,x,u,v)x2k(u2+x2v2)n−2k. |
On the other hand, Take
P2n+1,2k(p,q)=a2n+1,2k(p,q,1,1,0)=a2n+1,2k(p,q). |
With Eq. (44), this proves (20). Finally, since
Definition 5.1 (MFS-action). Let
φa(π)=w1w3aw2w4. |
Note that if
φ′a(π):={φa(π),if a is not a valley of π;π,if a is a valley of π. |
See Figure 2 for illustration, where exchanging
It is clear that
φ′S(π)=∏a∈Sφ′2a−1(π)φ′2a(π). |
Note that
Proof of Theorem 1. For any permutation
∑σ∈Orbπxdesσ2=xdesˉπ2(1+x)daˉπ2=xdesˉπ2(1+x)n−desˉπ. |
By summing over all the orbits that compose together to form
∑π∈DP2n+1xdes2π=⌊n2⌋∑k=0|DP2n+1,2k|xk(1+x)n−2k, |
by transforming
We need the following result[16,Lemma 2.1].
Lemma 6.1 (Shin-Zeng). For
(Lval,Lpk,Lda∖Fmax,Fmax,Ldd)σ | (46) |
=(Cval,Cpeak,Cda,Fix,Cdd)(Φ(σ)) | (47) |
=(Cval,Cpeak,Cda,Fix,Cdd)(Φ(σ))−1, | (48) |
and
((2-31)i,(31-2)i)σ=(nesti,crosi)(Φ(σ))−1fori∈[n]. | (49) |
As
Theorem 6.2. Let
(2-31,31-2,des,lda−fmax,ldd,lval,fmax)σ=(nest,cros,exc,cdd,cda,cval,fix)(˜Φ(σ))−1. | (50) |
Proof of Theorem 2.9. Using Foata-Zeilberger's bijection
● the step
● the step
● the step
● the step
while
nestiσ+crosiσ={hi,if (si−1,si) is North-East;hi−1,if (si−1,si) is South-East;hi,if (si−1,si) is East blue;hi−1,if (si−1,si) is East red. |
Thus
w(σ)=xERγ+NEγuEBγvERγwNEγyEB∗γqNEγ+EBγ2n∏i=1ppiqhi−1−pi, |
where
ak:=xw[k+1]p,q,bk:=ypk+qu[k]p,q,b′k:=xv[k]p,q,ck:=[k]p,q, | (51) |
if the step is North-East, East blue, East red and South-East, respectively, and the weight of
J2n(p,q,x,u,v,w,y)=∑γ∈DM2nw(γ). | (52) |
By Lemma 3.1,
∑n≥0J2n(p,q,x,u,v,w,y)zn=11−y2z−[1]2p,q[2]2p,qx2w2z21−((qu[2]p,q+p2y)2+x2v2[2]2p,q)z−[3]2p,q[4]2p,qx2w2z2⋯. | (53) |
By transforming
Proof of Theorem 2.10. The generating function of the right side of Eq. (32) is
∑n≥0⌊n/2⌋∑k=0(∑π∈DD2n,2k,0pnestπqcrosπ)(xw)2k(q2u2+x2v2)n−2kzn | (54) |
=∑n≥0∑π∈~DD2npnestπqcrosπ(xwq2u2+x2v2)cvalπ((q2u2+x2v2)z)n, | (55) |
where
J2n(p,q,1,0,1,w,0):=∑π∈~DD2npnestπqcrosπwcvalπ. |
Eq. (53) implies that
1+∑n≥1∑π∈~DD2npnestπqcrosπwcvalπzn=11−[1]2p,q[2]2p,qw2z21−[2]2p,qz−[3]2p,q[4]2p,qw2z21−[4]2p,qz⋯. |
Making the substitution
11−[1]2p,q[2]2p,qx2w2z21−(q2u2[2]2p,q+x2v2[2]2p,q)z−[3]2p,q[4]2p,qx2w2z21−(q2u2[4]2p,q+x2v2[4]2p,q)z⋯, | (56) |
which is generating function of
We need the following lemma. Let
Dn(q,t,u,v,w):=∑σ∈Dnqcycσxexcσucdaσvcddσwcvalσ. | (57) |
Lemma 7.1. [23,Eq. (41)] We have
1+∞∑n=1Dn(q,x,u,v,w)zn=11−0(xu+v)z−1(q+0)xwz21−1(xu+v)z−2(q+1)xwz21−2(xu+v)z−3(q+2)xwz2⋱. | (58) |
Define
1+∑n≥1(−1)nDcyc2n(β,x,u,v,w)z2n=11+b0z2−λ1x2w2z41+b1z2−λ2x2w2z4⋯, | (59) |
where, for
bk=(2k)2(x2u2+v2),andλk+1=(2k+1)(2k+2)(β+2k)(β+2k+1). |
Lemma 7.2. We have
Dcyc2n(β,x,u,v,w):=∑π∈DD2nβcycπxexcπucdaπvcddπwcvalπ. | (60) |
Proof of Lemma 7.2. Comparing the definition of (57) and (60), observing the Eq. (58), we constuct a doubled path
bk+b′k:=k(xu+v)andakck+1:=(k+1)(β+k)xw, | (61) |
where
Dcyc2n(β,x,u,v,w)=∑γ∈DM2nw(γ). |
By Lemma 3.1,
1+∑n≥1Dcyc2n(β,x,u,v,w)zn=11−0(x2u2+v2)z−2β(β+1)x2w2z21−22(x2u2+v2)z−3(β+2)4(β+3)x2w2z2⋯, | (62) |
which is equivalent to (59) by transforming
Proof of Thereom 2.11. Then the generating function of the right side of Eq. (34) is
1+∑n≥1⌊n/2⌋∑k=0(∑π∈DD2n,2k,0qcycπ)x2k(1+x2)n−2kzn | (63) |
=1+∑n≥1∑π∈~DD2nqcycπ(x1+x2)cvalπ((1+x2)z)n. | (64) |
Using Lemma 7.2, we have
Dcyc2n(β,1,1,0,w):=∑π∈~DD2nβcycπwcvalπ. |
Eq. (62) implies that
1+∑n≥1∑π∈~DD2nβcycπwcvalπzn=11−0⋅z−2β(β+1)w2z21−22⋅1z−3(β+2)4(β+3)w2z2⋯. | (65) |
Making the substitution
11−0⋅(1+x2)z−2β(β+1)x2z21−22⋅(1+x2)z−3(β+2)4(β+3)x2z2⋯, | (66) |
which is generating function of
A permutation
A Dyck path is a Motzkin path without horizontal step. So the length of a Dyck path must be even. Let
1+∑n≥1∑γ∈Dyck2nw(γ)z2n=11−a0c1z21−a1c2z21−a2c3z2⋱. | (67) |
Recall Definition 3.2, let Dyck path diagram (resp. restricted Dyck path diagram) of length
We also need a standard contraction formula for continued fractions, see [22,Eq. (44)].
Lemma 8.1 (Contraction formula). There holds
11−c1z1−c2z1−c3z1−c4z1−⋯=11−c1z−c1c2z21−(c2+c3)z−c3c4z21−⋯. |
Define the polynomials
∞∑n=0(−1)nE2n(p,q,x,y)z2n=11+[1]2p,qy2z21+[2]2p,qx2z21+[3]2p,qy2z21+[4]2p,qx2z2⋱ | (68) |
=1−y2z2+y2((p+q)2x2+y2)z4+⋯, |
and
∞∑n=0(−1)nE2n+1(p,q,x,y)z2n+1=xz1+[1]p,q[2]p,qy2z21+[2]p,q[3]p,qx2z21+[3]p,q[4]p,qy2z21+[4]p,q[5]p,qx2z2⋱=xz−(p+q)xy2z3+((p+q)2(p2+pq+q2)x3y2+(p+q)2xy4)z5+⋯. | (69) |
We have the following combinatorial interpretations for
Theorem 8.2. For
E2n(p,q,x,y)=∑π∈A2np(2-31)πq(31-2)πxevalπ+opkπyovalπ+epkπ, | (70) |
E2n+1(p,q,x,y)=∑π∈A2n+1p(2-13)πq(31-2)πxevalπ+opkπyovalπ+epkπ. | (71) |
Proof. We prove the Eq. (70) and Eq. (71) by using Françon-Viennot's bijection
● the step
● the step
While
For any
(31-2)iσ+(2-31)iσ={(31-2)i−1σ+(2-31)i−1σ+1if i−1 is a valley and i is a valley,(31-2)i−1σ+(2-31)i−1σ−1if i−1 is a peak and i is a peak,(31-2)i−1σ+(2-31)i−1σif i−1 is a valley and i is a peak,(31-2)i−1σ+(2-31)i−1σif i−1 is a peak and i is a valley, |
by induction we have
(31-2)iσ+(2-31)iσ={hiif i is a valley,hi−1if i is a peak. |
Therefore,
w(σ)=xENEγ+OSEγyONEγ+ESEγqNEγ2n∏i=1phi−1−ξiqξi, |
where
a2k:=[2k+1]p,qy,a2k+1:=[2k+2]p,qx,c2k:=[2k]p,qx,c2k+1:=[2k+1]p,qy, | (72) |
if the step is North-East at height
E2n(p,q,x,y)=∑γ∈Dyck2nw(γ). | (73) |
By (67),
∞∑n=0E2n(p,q,x,y)z2n=11−[1]2p,qy2z21−[2]2p,qx2z21−[3]2p,qy2z21−[4]2p,qx2z2⋱. | (74) |
By transforming
Remark 2.
E2n(p,q,x,1)=J2n(p,q,x,1,1,1,1), | (75) |
E2n+1(1,1,1,1)=J2n+1(1,1,1,1,1,1). | (76) |
Given a Dyck path
2. When
3. Dumont [10,Propostion 7] obtained
The author thanks Prof. Jiang Zeng for his inspiring discussions and useful comments. Most of the present work was done during his PhD at Institut Camille Jordan, Université Claude Bernard Lyon 1 in 2018-2019.
[1] | C. A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2016-2018), 64pp. |
[2] | F. Bowman, Introduction to Elliptic Functions with Applications, English Universities Press, Ltd., London, 1953. |
[3] |
Actions on permutations and unimodality of descent polynomials. European J. Combin. (2008) 29: 514-531. ![]() |
[4] |
New Euler-Mahonian statistics on permutations and words. Adv. in Appl. Math. (1997) 18: 237-270. ![]() |
[5] | E. V. F. Conrad, Some Continued Fraction Expansions of Laplace Transforms of Elliptic Functions., Ph.D thesis, Ohio State University, 2002. |
[6] | E. V. F. Conrad and P. Flajolet, The Fermat cubic, elliptic functions, continued fractions and a combinatorial excursion, Sém. Lothar. Combin., 54 (2005/07), 44pp. |
[7] |
S. Corteel, Crossings and alignments of permutations, Adv. in Appl. Math., 38 (2007) 149–163. doi: 10.1016/j.aam.2006.01.006
![]() |
[8] |
A combinatorial interpretation for the Schett recurrence on the Jacobian elliptic functions. Math. Comp. (1979) 33: 1293-1297. ![]() |
[9] |
Une approche combinatoire des fonctions elliptiques de Jacobi. Adv. in Math. (1981) 41: 1-39. ![]() |
[10] | D. Dumont, Pics de cycle et dérivées partielles, Sém. Lothar. Combin., 13 (1986), 19pp. |
[11] |
Combinatorial aspects of continued fractions. Discrete Math. (1980) 32: 125-161. ![]() |
[12] |
Elliptic functions, continued fractions and doubled permutations. European J. Combin. (1989) 10: 235-241. ![]() |
[13] |
D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, 138, Springer-Verlag, Berlin-New York, 1970. doi: 10.1007/BFb0060799
![]() |
[14] |
Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers. Math Z. (1974) 137: 257-264. ![]() |
[15] |
Denert's permutation statistic is indeed Euler-Mahonian. Stud. Appl. Math. (1990) 83: 31-59. ![]() |
[16] |
B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics, Adv. in Appl. Math., 121 (2020). doi: 10.1016/j.aam.2020.102092
![]() |
[17] | B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics via continued fractions, Sém. Lothar. Combin., 84B (2020), 12pp. |
[18] |
The γ-positivity of basic Eulerian polynomials via group actions. J. Combin. Theory Ser. A. (2015) 135: 112-129. ![]() |
[19] |
Several variants of the Dumont differential system and permutation statistics. Sci. China Math. (2019) 62: 2033-2052. ![]() |
[20] | S.-M. Ma, J. Ma, Y.-N. Yeh and R. R. Zhou, On the unimodality of the Taylor expansion coefficients of Jacobian Elliptic function, preprint, arXiv: 1807.08700v3. |
[21] |
on the representation of certain asymptotic series as convergent continued fractions. Proc. London Math. Soc. (2) (1907) 4: 72-89. ![]() |
[22] |
The q-tangent and q-secant numbers via continued fractions. European J. Combin. (2010) 31: 1689-1705. ![]() |
[23] |
The symmetric and unimodal expansion of Eulerian polynomials via continued fractions. European J. Combin. (2012) 33: 111-127. ![]() |
[24] |
Symmetric unimodal expansions of excedances in colored permutations. European J. Combin. (2016) 52: 174-196. ![]() |
[25] | A. D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, preprint, arXiv: 2003.08192. |
[26] |
R. P. Stanley, A survey of alternating permutations, in Combinatorics and Graphs, Contemp. Math., 531, Amer. Math. Soc., Providence, RI, 2010,165–196. doi: 10.1090/conm/531/10466
![]() |
[27] |
T.-J. Stieltjes, Sur the réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable, Ann. Fac. Sci. Tulouse Sci. Math. Sci. Phys., 3 (1889), H1–H17. doi: 10.5802/afst.34
![]() |
[28] |
Une interprétation combinatoire des coefficients de déveloooements en série entière des fonctions elliptiques de Jacobi. J. Combin. Theory Ser. A (1980) 29: 121-133. ![]() |
[29] |
S. H. F. Yan, H. Zhou and Z. Lin, A new encoding of permutations by Laguerre histories, Electron. J. Combin., 26 (2019), 9pp. doi: 10.37236/8661
![]() |
1. | Bin Han, The γ-positive coefficients arising in segmented permutations, 2021, 344, 0012365X, 112336, 10.1016/j.disc.2021.112336 | |
2. | Bin Han, Gamma-positivity of derangement polynomials and binomial Eulerian polynomials for colored permutations, 2021, 182, 00973165, 105459, 10.1016/j.jcta.2021.105459 |