We consider the following Schrödinger system
$ \begin{equation*} \left\{ \begin{aligned} &-\Delta u_j = \sum\limits_{i = 1}^k \beta_{ij}|u_i|^3|u_j|u_j+\lambda_j|u_j|^{q-2}u_j, \ \ \ \text{in}\, \, \Omega, \\ &u_j = 0\quad\text{on}\, \, \partial\Omega, \, \, j = 1, \cdots, k \end{aligned} \right. \end{equation*} $
where $ \Omega\subset\mathbb{R}^3 $ is a bounded domain with smooth boundary. Assume $ 5 < q < 6, \, \lambda_j > 0, \, \beta_{jj} > 0, \, j = 1, \cdots, k $, $ \beta_{ij} = \beta_{ji}, \, i\neq j, i, j = 1, \cdots, k $. Note that the nonlinear coupling terms are of critical Sobolev growth in dimension $ 3 $. We prove that under an additional condition on the coupling matrix the problem has infinitely many sign-changing solutions. The result is obtained by combining the method of invariant sets of descending flow with the approach of using approximation of systems of subcritical growth.
Citation: Changmu Chu, Jiaquan Liu, Zhi-Qiang Wang. Sign-changing solutions for Schrödinger system with critical growth[J]. Electronic Research Archive, 2022, 30(1): 242-256. doi: 10.3934/era.2022013
We consider the following Schrödinger system
$ \begin{equation*} \left\{ \begin{aligned} &-\Delta u_j = \sum\limits_{i = 1}^k \beta_{ij}|u_i|^3|u_j|u_j+\lambda_j|u_j|^{q-2}u_j, \ \ \ \text{in}\, \, \Omega, \\ &u_j = 0\quad\text{on}\, \, \partial\Omega, \, \, j = 1, \cdots, k \end{aligned} \right. \end{equation*} $
where $ \Omega\subset\mathbb{R}^3 $ is a bounded domain with smooth boundary. Assume $ 5 < q < 6, \, \lambda_j > 0, \, \beta_{jj} > 0, \, j = 1, \cdots, k $, $ \beta_{ij} = \beta_{ji}, \, i\neq j, i, j = 1, \cdots, k $. Note that the nonlinear coupling terms are of critical Sobolev growth in dimension $ 3 $. We prove that under an additional condition on the coupling matrix the problem has infinitely many sign-changing solutions. The result is obtained by combining the method of invariant sets of descending flow with the approach of using approximation of systems of subcritical growth.
[1] | T. Bartsch, Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, Partial Differ. Equ., 3 (2006), 200–207. |
[2] | Z. Chen, W. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differ. Equ., 252 (2012), 969–987. https://doi.org/10.1016/j.jde.2011.09.042 doi: 10.1016/j.jde.2011.09.042 |
[3] | Z. Chen, W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262 (2012), 3091–3107. https://doi.org/10.1016/j.jfa.2012.01.001 doi: 10.1016/j.jfa.2012.01.001 |
[4] | Z. Chen, C.-S. Lin, W. Zou, Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15 (2016), 859–897. https://doi.org/10.2422/20362145.201401_002 doi: 10.2422/20362145.201401_002 |
[5] | T.-C. Lin, J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $ R^n, n\leq3$, Comm. Math. Phys. 255 (2005), 629–653. https://doi.org/10.1007/s002200051313x doi: 10.1007/s002200051313x |
[6] | Z. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721–731. https://doi.org/10.1007/s002200080546x doi: 10.1007/s002200080546x |
[7] | Z. Liu, Z.-Q. Wang, Ground States and Bound States of a Nonlinear Schrödinger System, Adv. Nonlinear Stud., 10 (2010), 175–193. https://doi.org/10.1515/ans20100109 doi: 10.1515/ans20100109 |
[8] | J. Liu, X. Liu, Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52 (2015), 565–586. https://doi.org/10.1007/s005260140724y doi: 10.1007/s005260140724y |
[9] | J. Liu, X. Liu, Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differ. Equ., 261 (2016), 7194–7236. https://doi.org/10.1016/j.jde.2016.09.018 doi: 10.1016/j.jde.2016.09.018 |
[10] | G. Devillanova, S. Solimini, Concentrations estimates and multiple solutions to elliptic problems at critical growth, Adv. Differ. Equ., 7 (2002), 1257–1280. |
[11] | D. Cao, S. Peng, S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861–2902. https://doi.org/10.1016/j.jfa.2012.01.006 doi: 10.1016/j.jfa.2012.01.006 |
[12] | Z. Chen, C.-S. Lin, W. Zou, Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differ. Equ., 39 (2014), 1827–1859. https://doi.org/10.1080/03605302.2014.908391 doi: 10.1080/03605302.2014.908391 |
[13] | J. Zhao, X. Liu, J. Liu, p-Laplacian equations in $\mathbb{R}^N$ with finite potential via truncation method, the critical case, J. Math. Anal. Appl., 455 (2017), 58–88. https://doi.org/10.1016/j.jmaa.2017.03.085 doi: 10.1016/j.jmaa.2017.03.085 |
[14] | T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal., 186 (2001), 117–152. https://doi.org/10.1006/jfan.2001.3789 doi: 10.1006/jfan.2001.3789 |
[15] | T. Bartsch, Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal., 7 (1996), 115–131. https://doi.org/10.12775/TMNA.1996.005 doi: 10.12775/TMNA.1996.005 |
[16] | T. Bartsch, K.-C. Chang, Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655–677. https://doi.org/10.1007/s002090050492 doi: 10.1007/s002090050492 |
[17] | T. Bartsch, Z. Liu, T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Partial Differ. Equ., 29 (2004), 25–42. https://doi.org/10.1081/PDE-120028842 doi: 10.1081/PDE-120028842 |
[18] | T. Bartsch, Z. Liu, T. Weth, Nodal solutions of a p-Laplacian equation, Proc. Lond. Math. Soc., 91 (2005), 129–152. https://doi.org/10.1112/S0024611504015187 doi: 10.1112/S0024611504015187 |
[19] | S. Li, Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 3207–3227. https://doi.org/10.1090/S0002994702030313 doi: 10.1090/S0002994702030313 |
[20] | Z. Liu, J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differ.l Equ., 172 (2001), 257–299. https://doi.org/10.1006/jdeq.2000.3867 doi: 10.1006/jdeq.2000.3867 |
[21] | P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf. Ser. in Math., vol. 65. American Mathematical Society, Providence, 1986. https://doi.org/10.1090/cbms/065 |
[22] | K. Tintarev, K.-H. Fieseler, Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007. https://doi.org/10.1142/p456 |