ERA, 30(1): 242-256.

B\ Electroni DOT: 10.3934/era. 2022013
Atnig lectronic Received: 13 August 2021

@ Research Archive Revised: 22 October 2021

Accepted: 22 October 2021
http://www.aimspress.com/journal/era Published: 28 December 2021

Research article

Sign-changing solutions for Schrodinger system with critical growth

Changmu Chu', Jiaquan Liu? and Zhi-Qiang Wang>*

! School of Preparatory Education, Guizhou Minzu University, Guizhou 550025, China
2 LMAM, School of Mathematical Science, Peking University, Beijing 100871, China
3 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA

* Correspondence: Email: zhi-giang.wang @usu.edu.

Abstract: We consider the following Schrodinger system

k
3 -2 .
—Auj = Z:Bijluil lujlu; + Ajlujl* ~u;, in Q,
i=1

uj=0 ondQ, j=1,---,k

where Q c R’ is a bounded domain with smooth boundary. Assume 5 < g < 6,4; > 0, 3;; >
0,j=1,---,k Bij = Bji, i # j,i,j = 1,---, k. Note that the nonlinear coupling terms are of critical
Sobolev growth in dimension 3. We prove that under an additional condition on the coupling matrix the
problem has infinitely many sign-changing solutions. The result is obtained by combining the method
of invariant sets of descending flow with the approach of using approximation of systems of subcritical
growth.
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1. Introduction

In this paper, we consider the Schrodinger system with critical growth

k
3 -2 .
—Au; = ZﬁijluA loejluj + Ajlu|""u;, in Q, ®
i=1

u;j=0 ondQ, j=1,---,k

where Q C R? is a bounded domain with smooth boundary. This type of coupled systems have appli-
cations in some physical problem. In physics literatures the signs of the coupling constants §;;, i # j
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being positive or negative determine the nature of the system being attractive or repulsive. We re-
fer to [1-7] for further references on subcritical and critical problems therein. Our main result is the
following.

Theorem 1.1. Assume 5 < q< 6, /lj > 0, j: 1,--- ’k:ﬁjj > 0, j: 1,--- ,k, ,8,'/ :ﬁji, l,] =1,--- ,k,
and there exists Sy > 0 such that

k
D BiuEi = Bolé? for £ =&, &) € RE.

ij=1
Then the problem (P) has infinitely many solutions with all components being sign-changing.

It is worth mentioning that our Theorem 1.1 allows some pairs of components to be attractive, and
others repulsive.

Example 1.1. (attractive) 5;; >0, i # j, i,j=1,--- ,k
Example 1.2. (repulsive) 3;; <0, i # j, i,j=1,---, k and the matrix B = (B;;) is positive definite.

The problem (P) has a variational structure given by the functional

1 (< 1 < 1 (<
I(U) = —f \Vu,*dx — —f BiiluiPlu ) dx — —f Ailuil? dx
2 o jZ:; J 6 o I’JZ:“] J J q Jo ]Z:; J1

for U = (uy, - ,u) € X = Hy(Q) X -+ x Hy(Q), the k-fold product of Hj(Q). In order to prove
Theorem 1.1, we shall use a subcritical approximation scheme together with the method of invariant
sets of descending flow, in particular the abstract theorem from [8,9]. We briefly outline our approaches
here.

When we try to apply the abstract theorem to the functional I, we are faced with some difficulties.
Firstly being in dimension 3 the problem (P) is of critical Sobolev growth, and the functional 7 fails to
satisfy the Palais-Smale condition. From the classical work of [10] (see also for p-Laplacian in [11] and
for coupled systems in [9, 12]), using a subcritical approximation is an effective method to overcome
this difficulty. Since we also need to study the nodal property, we shall use an alternative scheme of
subcritical approximation as done in [13]. Our approach avoids passing to the limit of the subcritical
problems and is easier to deal with nodal property of the solutions. Secondly in order to deal with
nodal property of the solutions we employ the method of invariant sets of descending flow which has
become a well developed method for constructing multiple nodal solutions, we refer 8,9, 14-20] for
further references therein. In particular we rely on the recent developments in [8,9]. To use the method
of invariant set of descending flow one needs to construct certain invariant sets. This usually requires
some additional property of the gradient flow (or a pseudo gradient flow). Our approximation approach
also accommodates this issue well. More precisely, we consider the perturbed functionals

1 (< 1 a 1 (<
19(U) = = f > Vi dx - g, f > Blullui dx) — f > Al dx

for U = (uy,--- ,ux) € X, where 2 < p < 3, 0 < e <1 and g, is a smooth function satisfying

1 2
g =tfor0<t<—-, g()= cgt% for t > —, (1.1)
P £
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here c, is a constant depending on . The critical points of II(f) will be used as approximate solutions
of the problem (P) and it turns out that the approximate solutions converge to the solutions of the
problem (P) as the parameters € | 0, p T 3. Technically, we will first construct sign-changing critical
points U of I,(f), then send ¢ to zero while holding p fixed to get sign-changing critical points U with
|Ullw < 1 for the functionals I, defined by

1 < 1
IP(U)ZELZwujﬁdx—EfQ
j=1

Then using the profile decomposition of approximation solutions we obtain solutions of (P) by passing
limit of p — 3.

The paper is organized as follows. In Section 2 we will work on the perturbed functionals and
construct multiple nodal solutions as approximating solutions to the original problem. Section 3 is
devoted to the convergence analysis of the approximating solutions, then the proof of our main result
follows.

k k

1
Z,Bij|ui|p|uj|p dx — — f Z Ajluj|? dx.
; 9 Ja T

i,j=1

2. Critical points of the perturbed functionals

First we give the exact definition of the function g.. Let ¢ be a smooth function such that ¢(¢) = 1
forO<t<1,¢() = % for t > 2 and ¢(¢) is decreasing in ¢. Define g(7) = exp{ flt @ dT} and, for £ > 0,
g:(t) = %g(st). Then g, satisfies (1.1) and

1
58:(1) < €01 < g.(0), g (Ot < ¢, for t > 0. 2.1

To construct multiple nodal solutions for the subcritical approximating problems we will make use
of the following abstract theorem from [8, 9]. In the following, y(A) denotes the genus of a symmetric
and closed subset A (see [21] for properties of the genus theory).

Theorem 2.1. Let X be a Banach space, f be an even C'-functional on X, A be an odd mapping from
k

XtoX, and P;,Q;, j=1,--- ,k be open convex subsets of X with Q; = —P;. Denote W = | J(P;U Q),),
=1

k
X = ((0P; N 0Q;). Assume

j=1
(I,) f is an even C'-functional on X, and satisfies the Palais-Smale condition.

(I;) there exists c* > 0 such that
f(x)=c", forxeX.

(Ay) given by > 0, co > 0, there exists b = b(by, co) such that if | f(x)| < co, IDf(X)|| > by, then
(Df(x), x — Ax) > bllx — Ax|| > 0.
(Ay) A(OPj)) C P;, AQQ))Cc Q; j=1,-- ,k
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Introduce a sequence of families of subsets of X.
I, = {B| B c X, Bcompact, —B = Bandy(BN o' (X)) > lforo € A}

A={oloceCXX), ocodd, o(Pj) C Pj,0c(Q;))CQj, j=1,--+ ,kand o(x) = x if f(x) < 0}.
Define

c; = inf sup f(x).
Bel xeB\W

Assume
O I, 1=1,2,--- are nonempty.
Then

(1) ¢=c",1=1,2,--- are critical values of f.
2)c1 <<~ andc; — +o0as |l — .

(3) The critical set K. is nonempty, where
K: ={xlxe X\ W, f(x) =c, Df(x) =0}.

4) If ¢; = cip1 = -+ = Cyi—1 for some integer k, then y(K7) > k.

(5) If X is a Hilbert space, f is a C*-functional and for every critical point x of f, D*f(x) is a
Fredholm operator, then there exists x € K with m*(x, f) > |, where m* is the augmented Morse
index of x.

Lemma 2.1. The functional If) is of C?-class, satisfies the Palais-Smale condition and Dzlgf)(U )isa
Fredholm operator for every critical point U of the functional Iif).

Proof. Note that 2 < p < g < 6. Thus it is easy to verify that Iff) is a C2-functional. Moreover

k k k
(DIP (), ) = fQ D VuVe;dx - g fg > Bisluilu” dix) fQ D Bl e dx
=1 ij=1 i

i,j=1

) (2.2)
—fZ/ljlujlq_zujgpjdx for ¢ = (o1, -, 1) € X.
Qo
We have |
19(U) - —(DIY(U), U)
P
1 1 k 1 k k
=(z-- IVu'Izdx+—g;f ﬂi'|“i|p|”'|def Bijluil?luj|” dx
(2 P)L,; ! P ( Qi; ! ! ) szzll ! !
1 k 11 k 2.3)
L. f Bl dx) + (-~ 1) f sl dx
ZP(QL]Z;]J ’)qu;“

k
1 ]f ) 1 1,
2(z—-— [Vu,|“dx = (= = =)IIUII".
(-3 szl] Fdx=(3-)
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In the above we have used the fact that g.()t > %gg(t). By (2.3), any Palais-Smale sequence of 11(,8) is

) is of subcritical growth, by a standard argument I;,g) satisfies the

bounded in X. Since the functional 7,
Palais-Smale condition.

Let U be a critical point of Il(f). By the regularity theory, U is continuous on Q and therefore is
uniformly bounded. Then the operator Dzlff)(U ) is a compact perturbation of the Laplacian operator,

hence a Fredholm operator. O

Lemma 2.2. Denote ﬁfj = max(£p;;, 0). Define a compact and odd operator A: U = (uy,- -+ ,uy) €
X V=, =AU € X by the equations

k k
f VvV dx + g f D Bijluilluyl? dx) f > Bl 0, dx
Q Q Q=

ij=1

k k
Al fg D Bijluil?lusl? dx) fg D Bl P up; dx + A fﬂ 12 dx
i=1

ij=1

2.4)

for ¢ = (¢1,- - , @) € X. Then the following property holds: ifIIIEf)(U)II < co and ||DII(,‘S)(U)|| > by > 0,
there exists b = b(by, c) such that

(DIP(U), U - AU) > b||U - AU|| > 0.

Proof. By (2.2) and (2.4), we have

k
(DIPU), ¢y = fg D V(u; - v))Ve;dx

J=1

k k (2.5
+ g;(f Zﬁi/|ui|p|uj|p dx)f Biluil?lu "> (u; — v))g; dx
Qi1 Q50
for ¢ = (@1, ,¢r) € X. Choose ¢ = U — V, we obtain
(DIP(U), U - Vy =|lU - V|
k k
+ g;( f Zﬁijlui|p|uj|p dx) f Bl P~ (uy = v;)* dx.
Qij=1 Qi1
Hence,
(DIPWU),U-Vy=|U -V} (2.6)
and

k k
(DIY(U), U - V) 2 g fg D Byluillu1” dx) fg > Bl a2y - vy dx.(2.7)
] i=1

i,j=1
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It follows from (2.1), (2.5) and (2.7) that

KDIP(U), $)

1
2

k k
<IU - Villgl + g4 f Zﬁ,-,wu,»wm,wpdx)[ f > Bl 7% dx
Q Q

ij=1 i=1

k
: ( f > Bl 2w = v)? dx]
Q50

k
<IIU = Vllligll + cg; Bijluil?lul? dx)IUIIY, o 16l 20
L2P(Q)
Q

ij=1

1
2

k 2 (2.8)
. (f Zﬁi_j|ui|p|ujl”_2(uj -v;)? dx]
Qo
1
k ! -
<IlU = VIlligll + c[g;( L Zﬁij|ui|p|uj|p dx)llUIlfz,,(Q) UM 2 0 Il
ij=1
k k %
: (g;( f Zﬂijlu,-lplujl” dx) f Z Biluil?lu 1P (uj = v,)* dx]
Q50 QI
x © o2
<IU = Vllligll + B, * Ve \/<D1,, ), U = VUl 3,0 19l
which implies that
=2
IKDIP W) < U = VI + CallUI, 3,0, (DIS W), U = V). 2.9)

Choose s such that 2 < s < p < g. Then we deduce from (2.1) and (2.5) that

: 1
IPW) - —U - V.U)
N

=1Y(U) - %(DI?(U), U)

k k
1, _ _
+ =8 fQ D Bijluillusl? dx) fﬂ D Byl = v dx
ij=1 i=1

k k
1 1 2 1 ’ 4
:(E - ;) ||U|| + ;gs(jg;l;_lﬁi'iluilp'u’ilp dX) fg; ;,Bz]|u1|p|uj|l dx

1 a 4 (2.10)
+ =8 fg 2 Bl u” dx) fQ Zlﬁ;j|u,-|f’|u,-|"*2(u,,»—v,-)u,-dx '

i,j=1
1 : 11 g
- 58 f Bijlul " dx +(———) f Al dx
2p ( Qi; ! ! ) s q Q]Z:; 7
k
11y, . (1 1 -
z(i—;)uvn +(2—S—5)gg(fgij2:1ﬁ,»,|u,-| jujl” dx)
1 k k
+ =8 f D Bijluilluyl? dx) f D Byl = vju; .
Q= Q<
i,j=1 i=1
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Notice that the matrix B = (5;;) is positively definite, we have

k k
DBl < CIUPP < C 3 Byluilu .
ij=1 ij=1
It implies from (2.1) that

k k
gi( j; > Biluid?lu P dx) fg > Bilud?lu,l? dx < C. L > Bl dx). @.11)
i=1

ij=1 i,j=1

=~

From (2.7), (2.10) and (2.11), for sufficiently small oo > 0, we obtain

11\, (1 1 & -
(2— S)uUn +(28—2p)g8(fg 2 Bulul"u” dx)

i,j=1

k k
; 1 1, ) )
<IP(WU) = (U = V.U) - }gs( fg ,-,Z:“lﬁ"-i|u,-|p|uj|ﬁ dx) fg ;,Bijluilphljlp 2(uj = v)u;dx

k k 2
1 , _
<IPW) + KU =V, UM + C[&( f > Biflullul? dX)f D Bl s dx]
Q Q50

ij=1
k k %
' [g;(f > Bt dx) [ bl - vy dx]
Qij=1 Qo
1 k 3
<YW+ KU -V DI+ € [gs( [ Y potutre dx)] DISW),U-V)
ij=1
k
S|I[(;€)(U)| +C|IU - V||2 + C<D1‘,(,8)(U), U-V)+ 0'||U||2 + O_gg(f!; Zﬁ[le[|P|uj|p dx)
ij=1
Therefore,
k
e [ DBl dx) < CULOW) + 10 = VIE + (DIPW). U= V), 2.12)
Q=1

According to (1.1), there exists C, > 0 such that 1 < C.(1 + g.(1)). Hence

k 3
(/. SC( f D Byl dx)
Q

ij=1

k
<C. [1 + ga(j; Zﬁij|”i|p|uj|p dx)

ij=1

] (2.13)

<C, (1 + LW +|U = VI +(DIPU), U - V)).
Combining (2.9) with (2.13), we obtain
KDL < U = V|

p-2

+C, (1 + I + 11U = VIP +(DIP(U), U - V>)27 (DI®U), U - V)1,
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For o > 0 small enough, we have

(1+ U@l +1U - Vi )2” (DISU), U - V))?

<C(1+1IPW)| + U - vu)" IU = VIl + oIDI W)

_C(l + |1§,8>(U)|7 U= VIS )||U — VIl + alIDIPU)||

and
(1YW, U - V>)T (DIYW). U - V) < (IDIEW)IU - VI)
<C|U = VII’"" + oIDIP(U)]].

By the above inequalities, we have

IKDIEW)Il < C. (1 FIOW)T +1IU - vnH) U = V.

(2.14)

If ||I§f)(U)|| < ¢p and ||DII(,8)(U)|| > by > 0, we deduce from (2.13) that there exists b = b(by, cp) such

that ||U — V|| > b. It follows from (2.6) that

(DIP(U), U - AU) > b||U - AU|| > 0.

That A is odd is obvious. The compactness of A follows the regularity theory and the subcritical

growth.

Lemma 2.3. Let P;,Q;, j=1,--- ,k be open convex subsets of X, defined by
P;=Pi6) ={UIU = (u1,--- ,ux) € X, llu;llrsq) < 6}

0;=0;0)={UIU = (u1,--- ,u) € X, ||M7||L6(Q> <6k
Then there exists a constant 6, > 0 such that for 0 < 6 < 9, it holds that

A(OPj)C P;, A(0Q)cCQj, j=1,---,k

Proof. Choose ¢ = V* = (v],---,v;) as test function in (2.4). Then we have

C||v+|lL6(Q)
Svava}rdx
1 1
<¢/( f S Bl dx f Zﬁ,jlu PGty dx+ A, f (Yt dx
i,j=1
-1
<g. f Z,Bulu Plusl? dx) - N, o 1 IV 20y + lef iy IVl
i,j=1
=c (”u+”Lﬁ(g) +||u+||L6(Q))||u+||L6(Q) ||V s

O

(2.15)
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where ¢/, is a constant depending on & but independent of p € [2,3]. By (2.15) we have
||V ||L6(Q) <c (||M ||L6(Q) + ||M |L6(Q))||M ||L6(Q) (2.16)

Choose ¢, such that c;,(é’f_z + 6’1’_2) < % Then for 0 < ¢ < 6; and U € 0Q; we have ||u} || = ¢ and

, e _ 1 1
”V}—”LG(Q) < (67 2+ 6 2)||u}r||L6(Q) < §||u;||L6(Q) = 55-
Thatis for U € dQ;, wehave V = AU € Q;and A(0Q;) C Q,. Similarly A(OP;) C P;, j=1,---,k. O
Lemma 2.4. There exists 5, > 0 such that for 0 < 6 < 0, there exists ¢c* > 0 independent of € €
(0,11, p € [2, 3] such that
1P9(U)>c" >0 forUeX.
Proof.

k k

[(8> — Z |Vuj|2 d_x f Zﬁulu | |u1|p d.x - - f Z Ajlujlq d'x

i,j=1
q
|U|| = (U1, g + 1011, )
>c1||U||L6(Q) (UL g, + UL )

k
ForU e X = ﬂ(anﬂﬁQj),
j=1

=~

1050y = f Z((u ) + (u;)°)dx = 2k6°.

Hence
19(U) > c1||U||L6(Q) c2(||U||L6<Q) +IUI o)
c1||U||L6(Q) cl(\/ﬁ@z =c" >0
provided ¢, ((V2k6,)%2 + (V2k6,)772) < jerand 0 < 6 < 6. O

Now we define a sequence of critical values of the perturbed functional Ij(f)

e, p) = inf sup IP(U), [=1,2,-

Bell yep\w
k
where W = | J(P; U Qj)and forl=1,2,---
j=1
I', = (B|B C X, B compact,—B = B, (BN o~ (X)) > Ifor o € A},

= {00 € C(X,X), o odd o"(P)) C P;, 0(Q)) C Qj, j=1,--- .k
and of(U) = U if I(U) < 0}.
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Proposition 2.1. ¢/(e, p), | = 1,2, - are critical values of the functional I,(f). There exists U)(e, p) € X
such that I,(f)(Ul(e, p)) = ci(&, p), DI;,E)(UZ(S, p)) = 0, Ule, p) is sign-changing and the augmented
Morse index m*(U,(¢, p), Ii(f)) > . Moreover there exists a constant L;, independent of €, p, such that

1PUe, p) =cle,p) <L, £€(0,1], pe(2,3).

Proof. We apply Theorem 2.1 to our functional Iff). We have verified the conditions (/;)(Lemma 2.1),
(I)(Lemma 2.4), (A;)(Lemma 2.2) and (A,)(Lemma 2.3). We need only to verify the condition T

Denote n = [ + k. Choose nk functions v; € C;°(R2), i = 1,--- , nk with disjoint supports. Denote
nk
UIU Ztv,, Ztvl, -, Z t,-vi)eX,
i=n+1 i=n(k—1)+1
t=(tty o tw) €R™, 1 < R).

By Lemma 4.2 in [9] for R sufficiently large F; € I';, I'; is nonempty. Now we have

ci(e, p) < sup IY(U) < sup J(U) := L,
UeF,; U€EE;

where

=~

J(U)——fZIVujlzdx——fZ/lluJI dx, U= (up,---,u) € X,

nk

UIU—(Ztvl, Ztv,,u-, Z tvi) € X

i=n+1 i=n(k—1)+1

t=(ti,ty, "+ ,tw) € Rnk}‘

3. Convergence of the approximate solutions

As we have mentioned that the critical points of the perturbed functional Iéf) will be used as approx-
imate solutions of the original problem (P). Now we prove that these approximate solutions converge
to solutions of the original problem. More precisely, we show for any given integer k, we can find € > 0
small so that the functional If) has k nodal critical points whose L* norm all less than % (therefore they
are critical points of the functional /,). Then we send p to 3 to get solutions of the original problem.

Lemma 3.1. Assume that U € X satisfies I;f)(U ) < L, DII(,S)(U ) = 0, where L is independent of &, p.
Then there exists a constant & = (L) such that if 0 < & <&, I,(U) = I;,S)(U), DI,(U) = DI,(f)(U) =0
U is a critical point of I,

Proof. By (2.3), we have

1 1 1
L> [(U) = [P(U) = —(DIPW). U) = (5 = DIUIF.

Electronic Research Archive Volume 30, Issue 1, 242-256.
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There exists a constant M, independent of &, p, such that
1P < M, f Zﬁ,,m Pluyf” dx < M.
i,j=1

Choose & = L. Then for 0 < € < &,

g f Zﬁulul jujl” dx) = f Zﬁl,lul uil” dx, g f Zﬁ,,m P dx) =

i,j=1 i,j=1 i,j=1

Hence for 0 < & < &, 1,(U) = I(U), DI(U) = DI (U) = 0. O

Lemma 3.2. Assume p, € (2,3], p, » 3, U, € X, n=1,2,--- such that I, (U,) < L,DI,(U,) = 0,
where L is independent of p, and U, is sign-changing. Then U, is bounded in X. Assume U, — U in
X. ThenU, - Uin X, I(U) < L, DI(U) =0 and U is sign-changing.

Proof. Again we have

1
L>1,WU,=1,(U, - ;(DIPH(U,,), U,

1
> —||U, |
2 U
So U, 1s bounded in X. Assume U, — U in X. We have the following profile decomposition [22]
Up=U+ Y 02 Vilousl- = x00) + R, (3.1)
ke

where V; € D = D(R?), R, € D, X, € Q, Ty — +00, R, = 0in L5(Q) as n — co.
Assume 0, = 0, = min{o x| k € A}, x, = x,,;. The following claim can be proved as in [9-11].
Claim. There exist positive constant ¢, ¢ such that

U, ()| < ¢ for x € A,, f VU, 2dx < co.? (3.2)

where A, is called a safe region and defined by
Ay = (2 x € R, @ +2)0,7 < |x— x| < @+ D)y ).

Let U, = (uy,---,ux) € X be a critical point of I,,. The following local PohoZaev identity holds
(e.g., [9D):

/ljlujlp dx

k
1
=§f Z |Vuj|2(x— x*,Vn)dx—f Z(V”J Vi)dx — f (Vuj, x = x*)(Vuj, Vip)dx
Du D,

1, j=1 J=

k
2p f Z(Vuj,Vn)uJ dx — f (—Z/l Joa ;| + Zﬁ,jlu [P Juj[Pr)(x — x*, Vip)dx
" 455 ivj=

xj]

f)
9.D, J

”jl

(3.3)
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where D, = B ! (x,), 0,D, = 0D, N 0L, n is the outward normal to dQ, x* €e RN, n € C”(R3) such

(c+3)0'
that n(x) = 1 for |x — x*| < (¢ + 2)0;7, n(x) = 0 for |x — x*| > (¢ + 3)0’,7 and |Vn| < 203.
_1
Choose x* such that [x* — x| < (¢ +8)0,* and (x —x*,n) < O forall x € 4,D,. If 3.D,, = O we simply
choose x* = x,. With this choice of x* and the fact 2p, < 6 we have

nll

k
f Z|Vu,| (x — x*, Vpdx — f Z(VMJ,x X)(Vu;, Vi)dx (3.4)

"]1 ”]1

k
2pn f Z;(Vuj’ Vr])ujdx_f ( Z/l |I,tj|q 2 Zﬁljlu |P |uj|17n)(x )C V?])dx

mij=1

NI>—‘

The integrals of the right hand side of (3.4) are taken over the domain (A, due to the fact that Vip = 0
outside A,. Hence by the claim (3.2), we have

RHS of (3.4) < co. 2.

For the left hand side of (3.4), we have, keeping the profile decomposition (3.2) in mind

f |U,|" dx

1.3
dx>c0',§

LHS of (3.4) (

-3
2
>co,
[yl<L

1 .
In the above we assume 0,2 U, (0! - +x,) — V in D and choose L > 0 such that fly\<L [V|9dx > 0.
Because g > 5 we arrive at a contradiction for n large in

”]1

anU(U Y+ x,)

4_3 _1
o, <co,’.

Hence the index set A in the profile decomposition (3.1) is empty and U, — U in L%(Q), which
implies that U, — U in X due to the fact DI, (U,) = 0. Therefore I(U) = lim I, (U,) < L and

DI(U) = lim DI,, (U,) =0
Finally we prove that U is sign-changing. Denote U, = (uy,,, - -+ , ugn), U = (uy, -+ - ,u;). We have

k
fVMjnV‘dex: fZﬁijluinlpn|ujn|pn_2ujn§0jdx+/1jf|ujn|q_2ujn(>0jdx’ ¢j€Hé(Q)~
Q Q45 Q

Choosing ¢; = u? , we have

Jn’
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2
el By < fﬂ Vi, Vi, do
k
_2 _2
:LZIBijluinlpnlujnlpn ujnu}—ndX'F/le'ujn'q Ujnlt, dx
i=1

k
< f D Bl ) dx + 4, f (u')q dx
Q5 Q

)2 + [|Pn + 1149
S”Ul’ll L;pn(g)llujn L2Pn(Q) + ﬂj””jn”L‘l(Q)

3
2

2pu—2 _3
<P 4 U g

5
el o g

in which we used that ||U,|* is bounded by 4L. Hence there exists 6 > 0 such that ||u;Tn||Lo(Q) >0

and ||ujllzsq = lim IIM;THIILs(Q) > 0 > 0. Similarly ||uj_-||L6(Q) >0>0,j =1,---,k and we have
n—oo
U = (uy,--- ,u) 1s sign-changing. O

Proof of Theorem 1.1. First, obviously functions in X\W are sign-changing. Given an integer [/, by
Proposition 2.1 the functional Iff), 0 <& < 1,2 < p < 3 has a sign-changing critical point U,(¢, p)
with the augmented Morse index m*(U,(&, [), I;s)) > [. Moreover, there exists a constant L;, independent
of &, p, such that I'(Uy(e, p)) < L.

By Lemma 3.1 there exists £ = &(L;), independent of p, such that 0 < & < &, I,(U/(g, p)) =
IY(Uge, p)) < Ly, DI,(Uj(e, p)) = DI)(U(e, p)) = 0. Denote Ui(p) = Ui(e, p). Then U(p) is a
sign-changing critical point of the functional 7, with the augmented Morse index m*(U,(p), I,) > L.
Moreover 1,(U;(p)) < L, for2 < p < 3.

Choose p, € (2,3), p, — 3. By Lemma 3.2, U,(p,) is bounded in X. Assume U;(p,) — U, in X.
Then U;(p,) — U;in X, I(U;) < L;, DI(U)) = 0, U, is sign-changing, and the augmented Morse index

m'(Us 1) > Tim m*(Uy(pa), 1,) > 1
U, is a sign-changing critical point of the functional / with m*(U;, I) > I. Since the integer [ is arbitrary,
I has infinitely many sign-changing critical points, that is the problem (P) has infinitely many sign-
changing solutions. Finally we prove I(U;) — +o00 as [ — oco. Otherwise I(U;) < L, DI(U;) = 0. By

Lemma 3.2 U, is bounded in X. Assume U;, — U in X as [, — oo. Then by Lemma 3.2, U;, — U in
X, DI(U) = 0. Therefore

+oo > m*(U,I) > lim m* (U, I) > lim [, = +oo,
n—oo n—oo
we arrive at a contradiction. m|
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