Research article Special Issues

Doubly critical problems involving Sub-Laplace operator on Carnot group

  • Received: 01 April 2024 Revised: 18 July 2024 Accepted: 31 July 2024 Published: 16 August 2024
  • This paper was focused on the solvability of a class of doubly critical sub-Laplacian problems on the Carnot group $ \mathbb{G} $:

    $ -\Delta_{\mathbb{G}}u-\mu \frac{\psi^{2}(\xi) u }{\text{d}(\xi)^2} = \vert u\vert^{p-2}u +\psi^{\alpha}(\xi)\frac{\vert u\vert^{2^*(\alpha)-2}u}{\text{d}(\xi)^{\alpha}}, \quad u\in S^{1, 2}(\mathbb{G}). $

    Here, $ p\in (1, 2^*] $, $ \alpha\in (0, 2) $, $ \mu\in [0, \mu_{\mathbb{G}}) $, $ 2^* = \frac{2Q}{Q-2} $, and $ 2^*(\alpha) = \frac{2(Q-\alpha)}{Q-2} $. By means of variational techniques, we extended the arguments developed in [1]. In addition, we also established the existence result for the subelliptic system which involved sub-Laplacian and critical homogeneous terms.

    Citation: Shuhai Zhu. Doubly critical problems involving Sub-Laplace operator on Carnot group[J]. Electronic Research Archive, 2024, 32(8): 4969-4990. doi: 10.3934/era.2024229

    Related Papers:

  • This paper was focused on the solvability of a class of doubly critical sub-Laplacian problems on the Carnot group $ \mathbb{G} $:

    $ -\Delta_{\mathbb{G}}u-\mu \frac{\psi^{2}(\xi) u }{\text{d}(\xi)^2} = \vert u\vert^{p-2}u +\psi^{\alpha}(\xi)\frac{\vert u\vert^{2^*(\alpha)-2}u}{\text{d}(\xi)^{\alpha}}, \quad u\in S^{1, 2}(\mathbb{G}). $

    Here, $ p\in (1, 2^*] $, $ \alpha\in (0, 2) $, $ \mu\in [0, \mu_{\mathbb{G}}) $, $ 2^* = \frac{2Q}{Q-2} $, and $ 2^*(\alpha) = \frac{2(Q-\alpha)}{Q-2} $. By means of variational techniques, we extended the arguments developed in [1]. In addition, we also established the existence result for the subelliptic system which involved sub-Laplacian and critical homogeneous terms.



    加载中


    [1] R. Filippucci, P. Pucci, F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156–177. https://doi.org/10.1016/j.matpur.2008.09.008 doi: 10.1016/j.matpur.2008.09.008
    [2] M. Bhakta, Semilinear elliptic equation with biharmonic operator and multiple critical nonlinearities, Adv. Nonlinear Stud., 15 (2015), 835–848. https://doi.org/10.1515/ans-2015-0405 doi: 10.1515/ans-2015-0405
    [3] N. Ghoussoub, S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527–555. https://doi.org/10.1515/ans-2015-0302 doi: 10.1515/ans-2015-0302
    [4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differ. Equations, 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [5] W. Chen, Fractional elliptic problems with two critical Sobolov-Hardy exponents, Electron. J. Differ. Equations, 2018 (2018), 1–12.
    [6] R. B. Assuncão, J. C. Silva, O. H. Miyagaki, A Fractional $p$-Laplacian Problem with Multiple Critical Hardy-Sobolev Nonlinearities, Milan J. Math., 88 (2020), 65–97. https://doi.org/10.1007/s00032-020-00308-5 doi: 10.1007/s00032-020-00308-5
    [7] L. D'Ambrosio, Some Hardy inequalities on the Heisenberg group, Differ. Equations, 40 (2004), 552–564. https://doi.org/10.1023/B:DIEQ.0000035792.47401.2a doi: 10.1023/B:DIEQ.0000035792.47401.2a
    [8] L. D'Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (2005), 451–486. https://doi.org/10.2422/2036-2145.2005.3.04 doi: 10.2422/2036-2145.2005.3.04
    [9] Y. Han, P. Niu, Hardy-Sobolev type inequalities on the H-type group, Manuscripta Math., 118 (2005), 235–252. https://doi.org/10.1007/s00229-005-0589-7 doi: 10.1007/s00229-005-0589-7
    [10] P. Niu, H. Zhang, Y. Wang, Hardy type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc., 129 (2001), 3623–3630. https://doi.org/10.1090/S0002-9939-01-06011-7 doi: 10.1090/S0002-9939-01-06011-7
    [11] A. Loiudice, $L^p$-weak regularity and asymptotic behavior of solutions for critical equations with singular potentials on Carnot groups, Nonlinear Differ. Equation Appl., 17 (2010), 575–589. https://doi.org/10.1007/s00030-010-0069-y doi: 10.1007/s00030-010-0069-y
    [12] A. Loiudice, Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal., 126 (2015), 415–436. https://doi.org/10.1016/j.na.2015.06.010 doi: 10.1016/j.na.2015.06.010
    [13] A. Loiudice, Local behavior of solutions to subelliptic problems with Hardy potential on Carnot groups, Mediterr. J. Math., 15 (2018), 81. https://doi.org/10.1007/s00009-018-1126-8 doi: 10.1007/s00009-018-1126-8
    [14] A. Loiudice, Critical problems with Hardy potential on Stratified Lie groups, Adv. Differ. Equations, 28 (2023), 1–33. https://doi.org/10.57262/ade028-0102-1 doi: 10.57262/ade028-0102-1
    [15] J. Zhang, Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups, Manuscripta Math., 172 (2023), 1–29. https://doi.org/10.1007/s00229-022-01406-x doi: 10.1007/s00229-022-01406-x
    [16] J. Zhang, On the existence and multiplicity of solutions for a class of sub-Laplacian problems involving critical Sobolev-Hardy exponents on Carnot groups, Appl. Anal., 102 (2023), 4209–4229. https://doi.org/10.1080/00036811.2022.2107910 doi: 10.1080/00036811.2022.2107910
    [17] J. Zhang, Sub-elliptic systems involving critical Hardy-Sobolev exponents and sign-changing weight functions on Carnot groups, J. Nonlinear Var. Anal., 8 (2024), 199–231. https://doi.org/10.23952/jnva.8.2024.2.02 doi: 10.23952/jnva.8.2024.2.02
    [18] S. Bordoni, P. Pucci, Schrödinger-Hardy systems involving two Laplacian operators in the Heisenberg group, Bull. Sci. Math., 146 (2018), 50–88. https://doi.org/10.1016/j.bulsci.2018.03.001 doi: 10.1016/j.bulsci.2018.03.001
    [19] S. Bordoni, R. Filippucci, P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geometric Anal., 30 (2020), 1887–1917. https://doi.org/10.1007/s12220-019-00295-z doi: 10.1007/s12220-019-00295-z
    [20] P. Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 375–400. https://doi.org/10.3934/dcdss.2019025 doi: 10.3934/dcdss.2019025
    [21] M. Ruzhansky, D. Suragan, N. Yessirkegenov, Caffarelli-Kohn-Nirenberg and Sobolev type inequalities on stratified Lie groups, Nonlinear Differ. Equation Appl., 24 (2017), 56. https://doi.org/10.1007/s00030-017-0478-2 doi: 10.1007/s00030-017-0478-2
    [22] M. Ruzhansky, D. Suragan, Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups, Adv. Math., 308 (2017), 483–528. https://doi.org/10.1016/j.aim.2016.12.013 doi: 10.1016/j.aim.2016.12.013
    [23] M. Ruzhansky, D. Suragan, Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups, Adv. Math., 317 (2017), 799–822. https://doi.org/10.1016/j.aim.2017.07.020 doi: 10.1016/j.aim.2017.07.020
    [24] L. Roncal, S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106–158. https://doi.org/10.1016/j.aim.2016.07.010 doi: 10.1016/j.aim.2016.07.010
    [25] N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215
    [26] G. B. Folland, E. M. Stein, Hardy spaces on Homogeneous groups, in Mathematical Notes Vol. 28, Princeton University Press, Princeton, 1982. https://doi.org/10.1515/9780691222455
    [27] N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453–516. https://doi.org/10.1007/s002080000127 doi: 10.1007/s002080000127
    [28] D. Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pacific J. Math., 227 (2006), 361–397. https://doi.org/10.2140/pjm.2006.227.361 doi: 10.2140/pjm.2006.227.361
    [29] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-71897-0
    [30] M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-02895-4
    [31] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207. https://doi.org/10.1007/BF02386204 doi: 10.1007/BF02386204
    [32] S. P. Ivanov, D. N. Vassilev, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem, Word Scientific, Singapore, 2011. https://doi.org/10.1142/7647
    [33] D. C. de Morais Filho, M. A. S. Souto, Systems of $p$-Laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Commun. Part. Differ. Equations, 24 (1999), 1537–1553. https://doi.org/10.1080/03605309908821473 doi: 10.1080/03605309908821473
    [34] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(608) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog